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1. Introduction

Exploring the mechanism of electroweak symmetry breaking (EWSB) is the primary focus

of the upcoming LHC experiments ATLAS and CMS. The simplest explanation, the min-

imal Standard Model (SM), suffers from theoretical deficiencies and does not account for

all experimental facts. Weakly-coupled extensions of the SM such as its minimal super-

symmetric version MSSM are a possible solution. All weakly-coupled models contain new

particles in the range between about 100 GeV and 1 TeV that are observable at the LHC.

Among them are light scalar states, in particular one or more neutral Higgs bosons.

No Higgs boson has been observed so far, and the LHC will finally decide about its

existence. If no light Higgs boson exists, we have to consider alternatives to the familiar

SM. Models without a (light) Higgs boson are strongly coupled, hence much less predictive

and more difficult to handle theoretically. They need not provide new physics below the

TeV region. While simple strongly-coupled scenarios such as minimal technicolor tend to

be at variance with known precision data, more advanced models remain valid, and we are

not even close to a comprehensive view of the possibilities.

The theory and phenomenology of strong weak-boson scattering (for reviews, see, e.g.,

refs. [1 – 4]) has been a subject of active research for more than two decades. Early work on a

strongly interacting electroweak sector [5, 6] was motivated by the technicolor paradigm [7].

In particular, Bagger et al. [8] considered a collection of benchmark scenarios and their

observability at hadron colliders; this study was updated for the LHC parameters in [9, 10].

Later work focused on the sub-TeV behavior and its extrapolation to higher energies [11 –

16]. Studies of WW scattering at lepton colliders are also available [17 – 20]. More recently,

interest in WW scattering at the LHC was revived in the context of extra-dimension

models [21 – 24].

Since the LHC will start taking data soon, new and detailed experimental studies are

under way which prepare for the upcoming analyses at ATLAS and CMS. These have

to operate on a solid theoretical basis. However, the earlier phenomenological studies

mentioned above have restricted themselves to particular benchmark models, e.g., the

SM, technicolor-inspired resonances or specific unitary extrapolations of the low-energy

behavior. Non-SM models were treated using simplifying approximations, in particular

the effective W approximation (EWA) [25]. In recent years, event generators have become

available that implement exact matrix elements for multiparticle scattering processes at

the LHC [26 – 31]. However, due to the lack of a suitable unitarization prescription for the

high-energy region their applicability to non-SM WW scattering has been limited. For the

future analysis of real LHC data, it will be crucial to get rid of approximations and treat

the problem with full generality, as far as the physics is accessible to data analysis.

The present paper aims at a practical realization of the strongly-interacting scenario

that is suited for realistic physics simulation and experimental analysis. To this end, we
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introduce a generic parameterization of weak-boson scattering that includes all resonances

allowed by spin and isospin with free mass and width parameters. We embed this in

the generic effective-Lagrangian formalism for electroweak symmetry breaking [32, 33] and

properly match the high-energy region to the low-energy expansion. We also include the

model-independent part of loop corrections to the scattering amplitude.

The essentials of this formalism are well known (cf. refs. [1 – 4]). In order to set up a

well-defined framework, in sections 2 to 4.2 we collect the basic ideas and the necessary

formulas, following the notation of ref. [20]. In particular, we cover the tensor and isotensor

cases on the same footing as the more familiar scalar and vector resonances. For the reader’s

convenience, we summarize the relation to some other popular formalisms in section 3.4;

further details and a discussion of specific models can be found in the appendix.

In sections 4.3 to 4.5, we adopt a straightforward (K-matrix) unitarization scheme

that regulates the high-energy behavior, and apply it to the complete set of resonances

including the tensor and isotensor cases. This approach cum grano salis encompasses all

of the specific models studied earlier.

We extend the unitarized parameterization off-shell in a natural way (section 4.6).

Based on this, we have implemented it in a parton-level matrix element generator. The

SM emerges as a special case. Models can thus be studied in the context of cross-section

calculation and event generation, and there is no need for further approximations. The

partonic simulation provides complete six-fermion signals and irreducible background while

maintaining partial-wave unitarity in the WW scattering channels. We have realized this as

an extension to the public Monte-Carlo simulation package WHIZARD [27, 28]. In section 5,

we present selected numerical results that illustrate the improvements due to dropping the

EWA and to unitarizing the high-energy behavior.

Beyond partonic cross sections and events, the implementation makes it possible to

apply parton shower, hadronization, and fast or full detector simulation. This should

enable LHC analyses of weak-boson scattering to derive solid conclusions from comparing

simulation results with real data, once the latter are available.

2. Strong weak-boson scattering

In this section, we consider a generic no-(light-)Higgs scenario. In the absence of a light

scalar resonance, weak bosons become strongly interacting in the TeV range [34], and

the perturbative expansion in the weak couplings g, g′ breaks down. To the extent that

the corresponding scattering processes are observable at the LHC, a measurement of the

amplitudes is a probe of new physics in electroweak symmetry breaking.

2.1 The LHC case

The LHC can access this kind of physics in processes of the type qq → jj +4f . Among the

Feynman diagrams there are some where the initial quarks radiate approximately on-shell

W and Z bosons and become hard forward/backward (low-pT ) ’spectator’ jets, figure 1.

The weak bosons scatter quasi-elastically and decay into four additional fermions which

appear more centrally. This is the strong-scattering signal that we are interested in. It
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Figure 1: Topology of vector boson scattering in proton-proton collisions.

depends on detection efficiency and background reduction, which W/Z decay modes (four

leptons, semileptonic, all jets) are useful.

Quartic vector boson couplings are present not just in quasi-elastic V V → V V scat-

tering (V = W,Z), but also in triple vector boson production qq̄ → V ∗ → V V V . For

the high energies we are considering here this is suppressed compared to quasi-elastic

scattering just as in the SM, where for high Higgs masses the Higgs-Strahlung process

qq̄ → V ∗ → V H → V V V is suppressed compared to vector-boson fusion V V → H → V V .

Triple vector boson production at the LHC is therefore of minor phenomenological rele-

vance. (For the ILC case, cf. ref. [20].) We briefly discuss this class of processes at the end

of section 4.5 and otherwise concentrate on quasi-elastic scattering processes.

As an alternative to an expansion in the weak couplings g, g′, one can expand in

powers of E/Λ, where E is the characteristic energy scale of the subprocess, and the cutoff

Λ is loosely defined as 4πv with the electroweak scale v = (
√

2 GF )−1/2 = 246 GeV. In

practice, this expansion is valid up to about 1 TeV, where scattering amplitudes approach

the saturation of unitarity limits. The corresponding effective Lagrangian is known as the

electroweak chiral Lagrangian [33]. (There is a close analogy with the chiral-Lagrangian

approach to low-energy QCD [32, 35, 36].) For each scattering process, the leading order

(LO) in this expansion in E/Λ is completely predicted from low-energy data, while the

next-to-leading order (NLO) coefficients αi have to be determined by experiment. Some of

the parameters have been constrained by Z-pole and W pair production data. LHC data,

hopefully, will probe weak-boson scattering well into the TeV range and thus provide the

information that is still missing.

A meaningful experimental analysis of a non-perturbative scenario requires a class of

models to compare with. For each amplitude, the low-energy region which is quantita-

tively described by an effective Lagrangian, has to be matched to the region of unitarity

saturation at higher energies. In this region, amplitudes may exhibit resonances, or they

may approach saturation only asymptotically. There is the actual possibility of a rich high-

energy structure (like in QCD), but we have to keep in mind the limited event rates and

energy range of the LHC: while the distinction of leading resonances from a structureless

amplitude or from each other becomes feasible, looking further beyond and determining

asymptotic behavior is quite a challenge.
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2.2 Modeling Terra incognita

A comprehensive list of phenomenological models for strong EWSB includes all types of

resonances that can emerge in quasi-elastic weak boson scattering V V → V V with V =

W,Z. The case V = γ can be ignored: the strong interactions we are interested in are

a property of the longitudinal degrees of freedom, which are absent for the photon. For

similar reasons, we do not consider resonance couplings to the other gauge degrees of

freedom, i.e. transversally polarized W/Z bosons. There is no obvious relation of such

effects to electroweak symmetry breaking. Similarly, the couplings of a new resonance to

SM fermions may be important, but with our current knowledge the relation to electroweak

symmetry breaking is obscure, so we do not take them into account at the present stage.

Of course, the model may be extended to cover all of these effects as well, if necessary.

Spin selection rules restrict V V resonances to scalar, vector, and tensor type. In a

generic approach, resonance masses and widths are arbitrary parameters, with the limiting

case M → ∞ included. For each resonance, the partial width for decay into (longitudinal)

vector bosons is determined by the couplings to the corresponding scattering channel and

sets the lower bound for the total width. As stated above, we neglect other couplings, so the

V V couplings are directly related to the total width. Expanding results for low energies,

each resonance contributes a calculable shift to the chiral-Lagrangian parameters.

Low-energy weak interactions approximately respect weak isospin, also known as cus-

todial symmetry, SU(2)C [37]. Models with significant violation of weak isospin at high

energy tend to provide a shift to the low-energy ρ parameter that is not supported by

LEP precision data. In this paper, we therefore extend weak isospin to high energies and

consider the following resonances in V V → V V processes:

• scalar singlet σ, scalar quintet φ,

• vector triplet ρ,

• tensor singlet f , tensor quintet a,

with arbitrary masses and widths, including M → ∞. We might also list π (scalar triplet),

ω (vector singlet), etc., but their couplings to weak bosons are isospin-violating and thus

either small, so we can ignore them, or require unnatural cancellations to preserve the ρ

parameter.

It is straightforward to classify models of EWSB, also weakly-interacting ones, accord-

ing to their resonance content in V V scattering. For instance, a specific model with a σ

resonance is the SM. The vector resonance triplet ρ appears in technicolor models, but also

in extra-dimension models where it is understood as a W/Z resonance [21]. A tensor f

could be a graviton resonance [38].

We should expect superpositions of resonances. In particular, multiplets with specific

SU(2)L quantum numbers IL decompose into superpositions of SU(2)C multiplets: for

instance, the IL = 1/2 Higgses of the MSSM decompose into a light singlet σ = h and

a heavy triplet π = (H+, A,H−). With increasing mass, the latter decouples from V V

scattering due to isospin. Similarly, the Littlest Higgs model [39] contains a heavy complex
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IL = 1 multiplet which decomposes into a scalar I = 2 quintet φ and a singlet. The

parameterization that we introduce below supports multiple resonances (one per scattering

channel). For our numerical results, we have switched on only one resonance at a time.

2.3 Unitarity

Since we are interested in strongly coupled phenomena in energy ranges where perturbative

expansions break down, phenomenological models must have unitarity bounds explicitly

built in. For instance, the LO naive result for the WW → ZZ on-shell amplitude yields

quadratic rise with energy, while unitarity at most allows for an asymptotically constant

value. In a physics simulation, the naive result would produce by far too many events at

high energy, while in reality there might be no sensitivity to this region at all.

For quasi-elastic V V → V V scattering, the unitarity requirement is rather simple: the

eigenamplitudes, properly normalized, must lie on the Argand circle |a(s) − i/2| = 1/2.

(Strictly speaking, this is true in the limit g ≪ E/Λ where masses are neglected, and

photon and inelastic channels are considered subleading and are omitted.) For a(s) = 0,

this law is trivially satisfied. A resonance corresponds to the amplitude crossing the value

a(s) = i.

Conservation of angular momentum implies that the eigenamplitudes have definite

angular momentum (0, 1, 2, . . .), and since the weak bosons have spin 1, at LO there is no

unitarity problem for angular momentum higher than 2. Furthermore, if we keep weak

isospin as a symmetry, the eigenamplitudes also have definite isospin quantum numbers.

The relevant channels coincide with the list of resonances given above.

Computed at finite order in perturbation theory, a model amplitude that rises from

a small value of a(s) near s = 0, will eventually depart from the Argand circle. For

instance, the LO higgsless SM eigenamplitude a
(0)
00 (s) = 2s/v2 breaks the unitarity limit

Re a(s) ≤ 1/2 for E > 1.2 TeV, and in a perturbative expansion this is not remedied by

loop corrections in finite order. Therefore, unitarization models have been invented. They

act as an operator that takes a scattering amplitude and projects it onto the Argand circle

in an ad-hoc way.

For practical purposes, only gross features of the unitarization scheme are relevant.

For instance, in ILC physics (
√

s ≤ 1 TeV), unitarity saturation is not even reached, so the

low-energy expansion taken at face value is usually sufficient. The LHC can probe higher

energies, but both quark and weak-boson effective structure functions fall off rapidly with

rising energy and strongly suppress the impact of the multi-TeV range. So, the most

important property of any scheme is that it does ensure unitarity, and thus prohibits any

fake sn rise of the amplitude that, in a simulation, would produce too many events with

large V V invariant masses.

3. Basic theory

3.1 Effective lagrangian

Without a light Higgs boson, the interactions of fermions and vector bosons depend on

an infinite number of parameters. However, if the S-matrix is expanded in a series E/Λ

– 6 –
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with Λ = 4πv, at any fixed order in the expansion only a finite subset of the parameters is

relevant. Order by order, the expansion can be generated by a suitable low-energy effective

Lagrangian.

For a useful approximation, the effective Lagrangian has to respect the low-energy

symmetries, in particular electromagnetic U(1) and QCD SU(3) gauge invariance, which

therefore are realized linearly on the fields. The electroweak symmetry SU(2)L × U(1)Y is

broken by fermion and boson masses, but manifest in the low-energy current algebra as well

as in the massive vector-boson couplings. This can be encoded in a nonlinear realization.

Grouping quarks and leptons as left-handed and right-handed doublets QL/R and LL/R,

one introduces a matrix-valued field Σ(x) which transforms as

Σ → UL Σ U †
R (3.1)

under local SU(2)L × U(1)Y transformations, where UL(x) = exp
(

i
∑3

a=1 βa(x)τa
)

and

UR(x) = exp
(

iβ0(x)τ3
)

with gauge parameters βa(x) and Pauli matrices τa. The Σ matrix

field is also a special unitary matrix, i.e., it can be parameterized by

Σ(x) = exp

(−i

v
w(x)

)

(3.2)

with a scalar field triplet w =
∑3

a=1 waτa, cf. appendix A.2. The ground state for the

perturbative expansion is defined by Σ = 1, i.e., wa ≡ 0, and the nonlinearity appears in

the wa gauge transformations.

With these definitions, an effective Lagrangian which generates the lowest order in

E/Λ is the chiral Lagrangian [33, 4]

L =
v2

4
tr
[

(DµΣ)†(DµΣ)
]

− 1

2
tr [WµνW

µν ] − 1

2
tr [BµνB

µν ] − 1

2
tr [GµνG

µν ]

+ Q̄Li /DQL + Q̄Ri /DQR + L̄Li /DLL + L̄Ri /DLR

− (Q̄LΣMQQR + L̄LΣMLLR + h.c.) − L̄c
LΣ∗MNL

1 + τ3

2
ΣLL − L̄c

RMNR

1 + τ3

2
LR

(3.3)

As the basis for perturbation theory in the gauge couplings gs, g, g′, and E/Λ, this La-

grangian accounts for all particle-physics measurements that have been possible so far.

3.2 Resonances

To describe resonances in WW scattering, we add new degrees of freedom to the chiral

Lagrangian (3.3): scalar fields σ and φ, a vector field ρµ, and tensor fields fµν and aµν ,

represented by tensor products of Pauli matrices in SU(2) space. In our conventions, they

all transform as matter fields under SU(2)L according to their isospin representation,

σ → σ, ρ → UL ρ U †
L φ → (UL ⊗ UL)φ (UL ⊗ UL)†, (3.4)

f and a analogous to σ and φ, respectively.
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In terms of physical (charged) fields, the iso-singlets σ, f are neutral,

σ = σ0, (3.5)

the iso-triplet ρ decomposes as

ρ =
√

2

(

ρ+τ+ + ρ0 τ3

√
2

+ ρ−τ−

)

, (3.6)

and the iso-quintet fields φ, a contain doubly-charged components,

φ =
√

2
(

φ++τ++ + φ+τ+ + φ0τ0 + φ−τ− + φ−−τ−−
)

, (3.7)

where τ++ = τ+ ⊗ τ+, etc. (appendix A.1).

A minimal Lagrangian for these should contain a kinetic term and the lowest order

(in a derivative expansion) of couplings to W/Z pairs. There are two possibilities: (i)

couplings to transversal gauge bosons via the field strength Wµν , Bµν , and (ii) couplings

to longitudinal gauge bosons via the covariant derivative of the matrix field Σ. We do

not consider the first case: as discussed above, such couplings are not directly related to

EWSB. Furthermore, transversal gauge bosons are associated with a factor g or g′ instead

of E/Λ, so the interactions of transversal gauge bosons with a resonance are numerically

subdominant.

Let us look at couplings of a heavy resonance to longitudinal gauge bosons. As shown

by Appelquist/Longhitano et al. [33], all possible terms can be expressed via the two derived

fields

Vµ = Σ(DµΣ)† and T = Στ3Σ†. (3.8)

In the unitarity gauge where Σ = 1, they reduce to Vµ = −igWµ + ig′Bµ and T = τ3. If

we insist on isospin (custodial symmetry), the isospin-breaking spurion T can be omitted,

and all couplings to longitudinal gauge bosons proceed via couplings to Vµ. This vector

field transforms under SU(2)L × U(1)Y as

Vµ → UL Vµ U †
L. (3.9)

Each Lagrangian consists of a kinetic term for the resonance and a linear coupling to a

bosonic current. Explicitly [18],

Lσ = −1

2
σ
(

M2
φ + ∂2

)

σ + σjσ (3.10a)

Lφ = −1

2

[

1

2
tr
[

φ
(

M2
σ + ∂2

)

φ
]

+ tr [φjφ]

]

(3.10b)

Lρ =
1

2

[

M2
ρ

2
tr
[

ρµρµ
]

− 1

4
tr
[

ρµνρ
µν
]

+ tr
[

jµρρµ

]

]

(3.10c)

Lf = Lkin −
M2

f

2
fµνf

µν + fµνj
µν
f (3.10d)

La = Lkin − M2
t

4
tr [aµνa

µν ] +
1

2
tr [aµνj

µν
a ] (3.10e)
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(the explicit form of the the M = 0 kinetic term Lkin of the tensor [appendix A.3] is not

needed) with the currents

jσ =
gσv

2
tr [VµV

µ] (3.10f)

jφ = −gφv

2

(

Vµ ⊗Vµ − τaa

6
tr [VµV

µ]

)

(3.10g)

jµρ = igρv
2Vµ (3.10h)

jµν
f = −gfv

2

(

tr [VµVν ] − gµν

4
tr [VρV

ρ]

)

(3.10i)

jµν
a = −gav

2

[

1

2
(Vµ ⊗Vν + Vν ⊗ Vµ) − gµν

4
Vρ ⊗ Vρ

−τaa

6
tr [VµVν ] +

gµντaa

24
tr [VρV

ρ]

]

(3.10j)

The form of the interactions is completely determined by the transformation laws of the

fields and by the conditions of symmetry and transversality,

fµν = f νµ, aµν = aνµ, ∂µρµ = 0, ∂µfµν = 0, ∂µaµν = 0, (3.11a)

and tracelessness with respect to SU(2)

tr
[

ρµ

]

= tr [φ] = tr [aµν ] = 0. (3.12)

Analogous relations hold for the currents and uniquely fix their form, up to terms with

higher powers of derivatives.

Higher-derivative terms in the amplitude can be expanded about the resonance loca-

tion. Their on-shell values renormalize the leading interaction terms as given above and

can thus be dropped. The off-shell corrections are non-resonant and thus renormalize the

NLO low-energy effective Lagrangian, so they are included there and can also be omitted.

In short, our list of resonance interactions with longitudinal W/Z bosons is exhaustive (for

the vector resonance case, see appendix C).

With the interaction Lagrangian fixed, we can evaluate the partial widths for resonance

decay into vector bosons. Given the fact the we do not specify couplings to transversal

bosons, we can only calculate the leading term in the electroweak coupling expansion,

which is easily computed using the Goldstone-boson equivalence theorem (GBET) [5, 40].

The results are listed in table 1. With increasing number of spin and isospin components,

the resonance width decreases. Furthermore, with our normalization convention for the

dimensionless couplings gi, the width of a vector resonance has a scaling behavior different

from the others.

In a purely phenomenological approach, the couplings gi in the interaction Lagrangian

have no meaning on their own, and their normalization is arbitrary. Thus, it is useful to

eliminate them in favor of the resonance masses and widths which are observables, using

table 1. We will do this in the following section, so the matching to the low-energy effective

theory is made free of this ambiguity.
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Resonance σ φ ρ f a

Γ 6 1 4
3 ( v2

M2 ) 1
5

1
30

Table 1: Partial widths for resonance decay into longitudinally polarized vector bosons, computed

using the GBET. All values have to be multiplied by the factors g2/64π and M3/v2, where g is the

coupling in the corresponding resonance Lagrangian.

3.3 Low-energy effects

Below the first new resonance, physics is described by the chiral Lagrangian with a double

perturbative expansion in the electroweak and strong couplings, and in E/Λ. The LO in

E/Λ is generated by the Lagrangian (3.3). The NLO in E/Λ is generated by one-loop

corrections and by higher-order operators αiLi with coefficients αi. The list of NLO terms

with isospin symmetry SU(2)C consists of [33]

L1 = α1gg′ tr [BµνW
µν ] , (3.13a)

L2 = iα2g
′ tr [Bµν [Vµ,Vν ]] , (3.13b)

L3 = iα3g tr [Wµν [Vµ,Vν ]] , (3.13c)

L4 = α4(tr [VµVν ])2, (3.13d)

L5 = α5(tr [VµV
µ])2. (3.13e)

The first two terms introduce isospin breaking in the same form as the SM, i.e., only

via the coupling to the Bµ hypercharge gauge boson, just as the lowest order Lagrangian

does. This breaking disappears in the limit g′ ≪ g. L1 corresponds to the S parameter,

which is well constrained by LEP data. L2 and L3 affect three-boson couplings and are

also constrained by LEP; these bounds will be improved by weak-boson pair production

at the LHC. The last two terms are observable only in weak-boson scattering and are thus

unconstrained so far.

There are several sources that contribute to the α parameters. First of all, they

arise as counterterms for the one-loop correction, and therefore logarithmically depend on

a renormalization scale. Calculable contributions are generated by integrating out heavy

degrees of freedom, in particular the resonances introduced above. Ultimately, the values of

αi result from matching the underlying theory to the chiral Lagrangian; e.g., in a technicolor

model contributions to αi can be estimated from technifermion loops. In the analogous

case of low-energy QCD, such estimates are feasible, while in the electroweak case, the

underlying theory is unknown.

Here, we consider the contributions that result from integrating out resonances at tree

level. Formally, we can cast the interactions of a resonance Φ in the form

LΦ = z

[

1

2
Φ(M2 + A)Φ + ΦJ

]

, (3.14)

with a coefficient z and composite operators A and J . The specific formulae include sums

over spin and isospin indices.
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Resonance σ φ ρ f a

∆α4 0 1
4

3
4

5
2 −5

8

∆α5
1
12 − 1

12 −3
4 −5

8
35
8

Table 2: Shifts in the NLO chiral Lagrangian coefficients α4 and α5 that result from integrating

out a heavy resonance at tree level. All values have to be multiplied by the factors 16πΓ/M and

v4/M4.

α4

α5

σ

φ

ρ

f

a

Figure 2: Anomalous couplings α4/5 in the low-energy effective theory coming from the different

resonances under the assumption of identical masses and widths (table 2). The dashed arrow

indicates the shift due to renormalization scale variation. (The derivations are given in the text.)

Performing the path integral over Φ, we arrive at the effective Lagrangian which we

expand in powers of 1/M2 to obtain

Leff
Φ = − z

2M2
JJ +

z

2M4
JAJ + . . . (3.15)

As far as this Lagrangian contains terms that are already present in the LO chiral La-

grangian, they renormalize the LO coefficients, i.e., the couplings g and g′ and the elec-

troweak scale v. Since the values of these parameters are determined by low-energy data (in

the sub-TeV range), those shifts can be ignored. The leading part of the remainder can be

expressed as a combination of the NLO operators listed above. The resulting contributions

to α4 and α5 are given in table 2. The values increase with increasing spin and isospin,

and expressed in terms of the observable parameters v, Γ and M they all have the same

scaling factor v4/M4.

If a Lagrangian is used that contains a resonance explicitly, these shifts of the α pa-

rameters have to be omitted since they are replaced by the low-energy tail of the resonance.

Vice versa, if the resonance is not explicitly included in the Lagrangian but assumed to be

present (presumably, because its mass is beyond the reach of the experiment), the αi shifts

due to the resonance have to be added to the low-energy effective Lagrangian.
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In figure 2, we display the directions and relative magnitudes of these shifts in the

α4-α5 plane. We observe that the contributions due to resonances are roughly orthogo-

nal to the shift which is attributed to a change of renormalization scale in the one-loop

corrections (4.6), which makes the two sources distinguishable in principle. Furthermore,

arbitrary resonance patterns induce a combined shift which lies between the upper and

lower-right directions in figure 2. This coincides with the region favored by causality con-

siderations [16].

If there is only one important resonance, a simultaneous fit to both α parameters in

the low-energy region would thus enable us first to distinguish the isosinglet case (scalar

or tensor) on the one hand from the isotriplet/-quintet case (scalar, vector or tensor) on

the other hand. If the resonance can actually be produced, an angular analysis of its decay

products (for instance, in the golden channel R → ZZ → 4µ) could then distinguish scalar

from tensor. The ρ resonance multiplet has the characteristic feature that the ZZ decay

channel is absent, a manifestation of the Landau-Yang theorem.

3.4 Reparameterizations

In this section we discuss alternative parameterizations of the physics we are interested

in. Due to the equivalence theorem of quantum field theory [41]1, they can lead to differ-

ent intermediate results (such as Feynman rules), but ultimately have to yield the same

observables.

(a) In the previous sections, we have chosen a particular representation of the effective

Lagrangian which manifestly exhibits SU(2)L ×U(1)Y gauge symmetry and SU(2)C global

isospin symmetry. While gauging electroweak symmetry is useful for making contact with

the SM and to low-energy current algebra, and for computing loop corrections, tree-level

calculations (at least) can be done in unitarity gauge, where weak bosons are merely heavy

matter fields. The rules for unitarity gauge are

w → 0, (3.16)

Σ → 1, (3.17)

Vµ → −igWµ + ig′Bµ. (3.18)

In this gauge, the Goldstone scalars wa disappear, and only physical degrees of freedom

are present.

(b) Alternatively, in the limit that the gauge couplings g, g′ can be neglected compared

with E/Λ (gaugeless limit), one may omit the gauge fields and study processes with ex-

ternal Goldstone scalars wa only. These calculations are particularly simple. Due to the

GBET, in the gaugeless limit the resulting observables are identical to observables where

the Goldstone scalars are replaced by physical, longitudinally polarized, vector bosons.

(c) The UET states that physical observables are invariant with respect to arbitrary

nonlinear field redefinitions. While manifest symmetries should be kept in a linear realiza-

tion for obvious reasons, there is much freedom in the treatment of nonlinear symmetries.

1We may call this the universal equivalence theorem (UET) to distinguish it from the Goldstone-boson

equivalence theorem (GBET) [40] for electroweak interactions, which is a corollary of the UET and gauge

invariance.
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A simple corollary implies that all parameterizations of the unitary matrix Σ in terms of

three scalar fields are equivalent. For instance, we could alternatively use

Σ(x) =

√

1 − w(x)2

v2
×
(

1− i

v
w(x)

)

(3.19)

and get new Feynman rules, but identical results for Goldstone scattering and vector-boson

scattering observables.

(d) A straightforward nonlinear reparameterization involves omitting the B field from

the covariant derivative Dµ in (3.8) and expressing the couplings in terms of

Wa
µ = tr [Vµτa] and Bµ, (3.20)

which results in vector fields that are invariant under SU(2)L but transform nontrivially

under U(1)Y instead: W± become matter fields while W0 behaves like a gauge field.

Analogously, by multiplying fermion doublets with Σ factors, fermion fields transforming

just under U(1)Y can be introduced. This approach, which is close to choosing unitarity

gauge, has been described in ref. [42].

(e) The CCWZ version of the chiral Lagrangian [35] introduces the square root of Σ,

Σ = ξξ, (3.21)

so in the exponential parameterization

ξ(x) = exp

(−i

2v
w(x)

)

. (3.22)

The field ξ has a mixed transformation law,

ξ → ULξU †
C = UCξU †

R, (3.23)

which defines an SU(2) matrix UC(x) as a function of the transformations UL(x) and UR(x)

and of the field ξ(x). The matrix UC(x) can be interpreted as a local isospin transformation,

UC ∈ SU(2)C .

Using ξ, the chiral fermion multiplets QL/R and LL/R can be promoted to Dirac spinor

multiplets,

Q =

(

ξQR

ξ†QL

)

, L =

(

ξLR

ξ†LL

)

, (3.24)

which no longer transform under SU(2)L or U(1)Y , but have a common transformation

law as isospin doublets: Q → UCQ, L → UCL. Similarly, ξ factors make the resonance

multiplets invariant under SU(2)L × U(1)Y , but transforming under SU(2)C .

For a vector resonance ρ, the CCWZ formulation allows to introduce it either as a

matter field, or as the gauge field of local SU(2)C , with gauge couplings only. In the

Lagrangian above, we have introduced the ρ resonance as a matter field. In appendix C,

we describe the alternative formulation with ρ as a gauge field and verify the equivalence

of the two approaches.
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To summarize, while our formulation of the chiral Lagrangian coupled to resonances is

by no means unique, it is nevertheless equivalent to any other formulation that correctly de-

scribes low-energy physics. As such, the chiral Lagrangian approach is model-independent.

We do use model assumptions and truncations, however: no isospin violation beyond hyper-

charge and fermion couplings, minimality in the number of degrees of freedom (at most one

resonance per channel), a minimal set of couplings (no independent couplings to transversal

gauge bosons, no self-couplings of resonances), truncation of the low-energy expansion (LO

and NLO only), and minimality in the unitarization scheme (no extra parameters). As long

as the new degrees of freedom are heavy, these model assumptions are likely irrelevant for

the experimental precision that can be achieved at the LHC. Extensions of our approach,

e.g., including secondary resonances, are easily possible, but not worked out here to keep

this paper compact.

In appendix D we relate various specific models that are frequently used in the analysis

of weak-boson scattering to our generic parameterization.

4. On-shell scattering amplitudes

4.1 Low-energy effective theory

Let us look first at the W+W− → ZZ weak-boson scattering amplitude. In the electroweak

coupling expansion, the leading term is of order g0 and corresponds, at high energy, to the

scattering of longitudinally polarized particles. This term rises with s, while the scattering

amplitudes of transversally polarized vector bosons come with factors of g and asymptot-

ically do not rise with energy. By the GBET, the leading term is equal to the amplitude

A(s, t, u) for w+w− → zz Goldstone scattering. This amplitude is easily computed using

the Lagrangian (3.3). At tree-level, but to NLO in the E/Λ expansion, it is

Atree(s, t, u) =
s

v2
+ 4α4

t2 + u2

v4
+ 8α5

s2

v4
. (4.1)

The leading real part (order g0) of the one-loop correction is given by [43]

A1-loop
C (s, t, u) =

1

16π2

[(

1

2
ln

µ2

|s| + 8C5

)

s2

v4
+

(

t(s + 2t)

6v4
ln

µ2

|t| + 4C4
t2

v4

)

+ (t ↔ u)

]

,

(4.2)

where µ is the renormalization scale, and C4 and C5 are finite scheme-dependent matching

coefficients. For instance, in the MS scheme, µ is identified with the MS scale, and C4 =

C5 = 0. By contrast, in the scheme where a fictitious (heavy) Higgs boson is used as a

regulator [44], we have

µ = MH and C4 = − 1

18
≈ −0.056, C5 =

9π

16
√

3
− 37

36
≈ −0.0075. (4.3)

Note that these matching coefficients are numerically small, so the difference between the

two schemes may be neglected. Other schemes are possible, e.g., the QCD-inspired scheme

used in ref. [16] is reproduced by C4 = −13/72, C5 = −5/72.
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Figure 3: Dependence of the loop correction on the scattering angle θ. The parameters are√
s = µ = 1 TeV.

In figure 3, we plot the angular dependence of the one-loop correction. If the renor-

malization scale µ is chosen equal to the energy
√

s, the loop correction, and thus the

angular dependence, is less than 2.5%. Since the NLO correction is proportional to s2

(compared with the LO amplitude proportional to s), it rapidly becomes important for

s > µ2. However, this mainly indicates the breakdown of the low-energy expansion at high

energies.

We can transfer the scheme-dependent matching coefficients to the NLO countert-

erms, so the above result is reproduced by maintaining only the logarithmic terms in the

amplitude,

A1-loop(s, t, u) =
1

16π2

[

s2

2v4
ln

M2

|s| +
t(s + 2t)

6v4
ln

M2

|t| + (t ↔ u)

]

, (4.4)

and adding one-loop matching contributions to α4 and α5,

α
(1)
4 =

1

16π2
C4, α

(1)
5 =

1

16π2
C5. (4.5)

The renormalization scale dependence of these coefficients is given by

α4(µ) = α4(µ0) −
1

12

1

16π2
ln

µ2

µ2
0

, α5(µ) = α5(µ0) −
1

24

1

16π2
ln

µ2

µ2
0

, (4.6)

with some reference scale µ0.

Isospin symmetry determines all individual scattering amplitudes in terms of the mas-

ter amplitude A(s, t, u):

A(w+w− → zz) = A(s, t, u) (4.7a)

A(w+z → w+z) = A(t, s, u) (4.7b)

A(w+w− → w+w−) = A(s, t, u) + A(t, s, u) (4.7c)

A(w+w+ → w+w+) = A(t, s, u) + A(u, s, t) (4.7d)

A(zz → zz) = A(s, t, u) + A(t, s, u) + A(u, s, t) (4.7e)
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Expanding the amplitudes in powers of the energy, the order-E2 term is known as the

low-energy theorem (LET) [45]:

A(0)(w+w− → zz) = s/v2 (4.8a)

A(0)(w+z → w+z) = t/v2 (4.8b)

A(0)(w+w− → w+w−) = −u/v2 (4.8c)

A(0)(w+w+ → w+w+) = −s/v2 (4.8d)

A(0)(zz → zz) = 0 (4.8e)

These expressions are model-independent and depend just on the electroweak scale v.

4.2 Resonances

In section 3.2, we have introduced heavy resonances in weak-boson scattering. The in-

teraction Lagrangians (3.10a)–(3.10e) induce couplings to vector bosons and to Goldstone

bosons, which are related by electroweak gauge invariance, maintaining the GBET. Each

resonance multiplet therefore contributes additional terms to the Goldstone scattering am-

plitude A(s, t, u), which have poles at the appropriate locations. We do not yet include the

resonance widths. The new contributions are

Aσ(s, t, u) = −g2
σ

v2

s2

s − M2
(4.9a)

Aφ(s, t, u) = −
g2
φ

4v2

(

t2

t − M2
+

u2

u − M2
− 2

3

s2

s − M2

)

(4.9b)

Aρ(s, t, u) = −g2
ρ

(

s − u

t − M2
+

s − t

u − M2
+ 3

s

M2

)

(4.9c)

Af (s, t, u) = −
g2
f

6v2

s2

s − M2
P2(s, t, u) +

g2
f

12v2

s2

M2
(4.9d)

Aa(s, t, u) = − g2
a

24v2

{

t2

t − M2
P2(t, s, u) +

u2

u − M2
P2(u, s, t)

−
(

2

3

s2

s − M2
− s2

6M2

)

P2(s, t, u)

}

(4.9e)

where P2(s, t, u) = [3(t2 + u2) − 2s2]/s2.

Beyond the resonance location, for gσ = 1 the σ exchange amplitude cancels the rise of

the LET amplitude. This is the SM case. Otherwise, beyond the resonance all amplitudes

rise with a power of s/M2. This implies again unitarity violation, which has to be cured

by the unknown UV completion of the theory.

4.3 Eigenamplitudes

For the analysis of unitarity, we need the spin-isospin eigenamplitudes, i.e., scattering

amplitudes for superpositions of states which scatter only into themselves. We first list the
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isospin eigenamplitudes

A0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, s, t) (4.10a)

A1(s, t, u) = A(t, s, u) − A(u, s, t) (4.10b)

A2(s, t, u) = A(t, s, u) + A(u, s, t) (4.10c)

which can be decomposed into partial waves using Legendre polynomials,

AI(s, t, u) =

∞
∑

J=0

AIJ(s) (2J + 1)PJ (s, t, u), (4.11)

where AIJ 6= 0 only for I − J even. The coefficient functions AIJ(s) are the spin-isospin

eigenamplitudes. They are obtained by angular integration,

AIJ(s) =

∫ 0

−s

dt

s
AI(s, t, u)PJ (s, t, u). (4.12)

Below, we explicitly list the spin-isospin eigenamplitudes, treating LO, NLO, and reso-

nances separately:

(a) The eigenamplitudes for the LO Lagrangian:

A
(0)
00 = 2

s

v2
A

(0)
11 =

s

3v2
A

(0)
20 = − s

v2
(4.13)

All other terms vanish at this order.

(b) The one-loop correction with its logarithmic angular dependence contains partial

waves of arbitrary spin. We extract the leading logarithms ln(µ2/s), project out the partial

waves and truncate the series at spin 3, which numerically is an excellent approximation.

Adding the tree-level NLO coefficients, which should include their scheme-dependent and

scale-dependent parts (4.5), (4.6), the real part of the result is

A
(1)
00 =

[

8

3
(7α4(µ) + 11α5(µ)) +

1

16π2

(

25

9
ln

µ2

s
+

11

54

)]

s2

v4
(4.14a)

A
(1)
02 =

[

8

15
(2α4(µ) + α5(µ)) +

1

16π2

(

1

9
ln

µ2

s
− 7

135

)]

s2

v4
(4.14b)

A
(1)
11 =

[

4

3
(α4(µ) − 2α5(µ)) +

1

16π2

(

− 1

54

)]

s2

v4
(4.14c)

A
(1)
13 =

[

0 +
1

16π2

(

7

1080

)]

s2

v4
(4.14d)

A
(1)
20 =

[

16

3
(2α4(µ) + α5(µ)) +

1

16π2

(

10

9
ln

µ2

s
+

25

108

)]

s2

v4
(4.14e)

A
(1)
22 =

[

4

15
(α4(µ) + 2α5(µ)) +

1

16π2

(

2

45
ln

µ2

s
− 247

5400

)]

s2

v4
(4.14f)

We note that the scale dependence of the α parameters cancels the scale-dependence of

the one-loop terms, as it should be the case. The results are shown in figure 4. While the

loop correction is small below about 1 TeV, for higher energies it becomes important and,
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Figure 4: Spin-isospin eigenamplitudes as functions of the energy
√

s, unitarized according to the

scheme described in section 4.5. Solid curves: LO; dashed curves: NLO. Dotted curve: A00(s)

without unitarization.

eventually, drastically changes the behavior. For instance, in A00 there is a cancellation

between the LO and NLO terms at 2 TeV. This clearly indicates the breakdown of the

low-energy expansion.

(c) For the decomposition of resonance corrections, we define the following functions:

SJ(s) =

∫ 0

−s

dt

s

t2

t − M2
P0(t, s, u)PJ (s, t, u) (4.15a)

PJ (s) =

∫ 0

−s

dt

s

t

t − M2
P1(t, s, u)PJ (s, t, u) (4.15b)

DJ(s) =

∫ 0

−s

dt

s

t2

t − M2
P2(t, s, u)PJ (s, t, u) (4.15c)

which we give explicitly in appendix A.4. We obtain for the isosinglet scalar,

Aσ
00(s) = −3

g2
σ

v2

s2

s − M2
− 2

g2
σ

v2
S0(s) Aσ

13(s) = −2
g2
σ

v2
S3(s) (4.16a)

Aσ
02(s) = −2

g2
σ

v2
S2(s) Aσ

20(s) = −2
g2
σ

v2
S0(s) (4.16b)

Aσ
11(s) = −2

g2
σ

v2
S1(s) Aσ

22(s) = −2
g2
σ

v2
S2(s) (4.16c)

the isoquintet scalar,

Aφ
00(s) = −5

3

g2
φ

v2
S0(s) Aφ

13(s) =
5

6

g2
φ

v2
S3(s) (4.17a)

Aφ
02(s) = −5

3

g2
φ

v2
S2(s) Aφ

20(s) = −1

2

g2
φ

v2

s2

s − M2
− 1

6

g2
φ

v2
S0(s) (4.17b)

Aφ
11(s) =

5

6

g2
φ

v2
S1(s) Aφ

22(s) = −1

6

g2
φ

v2
S2(s) (4.17c)
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the isotriplet vector,

Aρ
00(s) = −4g2

ρP0(s) − 3g2
ρ

s

M2
Aρ

13(s) = −2g2
ρ

2s + M2

M4
S3(s) (4.18a)

Aρ
02(s) = −4g2

ρ

2s + M2

M4
S2(s) Aρ

20(s) = 2g2
ρP0(s) + 3g2

ρ

s

M2
(4.18b)

Aρ
11(s) = −2

3
g2
ρ

s

s − M2
− g2

ρ

s

M2
− 2g2

ρP1(s) Aρ
22(s) = 2g2

ρ

2s + M2

M4
S2(s) (4.18c)

the isosinglet tensor,

Af
00(s) = −

g2
f

3v2
D0(s) −

11

36

g2
f

v2

s2

M2
(4.19a)

Af
02(s) = −

g2
f

10v2

s2

s − M2
−

g2
f

3v2

(

1 + 6
s

M2
+ 6

s2

M4

)

S2(s) −
1

180

g2
f

v2

s2

M2
(4.19b)

Af
11(s) = −

g2
f

3v2
D1(s) +

1

36

g2
f

v2

s2

M2
(4.19c)

Af
13(s) = −

g2
f

3v2

(

1 + 6
s

M2
+ 6

s2

M4

)

S3(s) (4.19d)

Af
20(s) = −

g2
f

3v2
D0(s) −

1

18

g2
f

v2

s2

M2
(4.19e)

Af
22(s) = −

g2
f

3v2

(

1 + 6
s

M2
+ 6

s2

M4

)

S2(s) −
1

180

g2
f

v2

s2

M2
(4.19f)

and the isoquintet tensor,

Aa
00(s) = −5

6

g2
a

3v2
D0(s) −

5

108

g2
a

v2

s2

M2
(4.20a)

Aa
02(s) = −5

6

g2
a

3v2

(

1 + 6
s

M2
+ 6

s2

M4

)

S2(s) −
1

216

g2
a

v2

s2

M2
(4.20b)

Aa
11(s) =

5

12

g2
a

3v2
D1(s) −

5

432

g2
a

v2

s2

M2
(4.20c)

Aa
13(s) =

5

12

g2
a

3v2

(

1 + 6
s

M2
+ 6

s2

M4

)

S3(s) (4.20d)

Aa
20(s) = − 1

12

g2
a

3v2
D0(s) −

5

108

g2
a

v2

s2

M2
(4.20e)

Aa
22(s) = − g2

a

60v2

s2

s − M2
− 1

12

g2
a

3v2

(

1 + 6
s

M2
+ 6

s2

M4

)

S2(s) −
1

2160

g2
a

v2

s2

M2
(4.20f)

The coefficient functions AIJ contain poles in s − M2 as well as finite parts. The poles

are confined to those (I, J) combinations which correspond to the (I, J) assignments of

the resonances. Again, we truncate the partial-wave expansion at J = 3, so for each

spin-isospin combination we only keep the leading and one subleading term.

4.4 Unitarization scheme

Elastic unitarity requires that the normalized eigenamplitudes

aIJ(s) =
1

32π
AIJ(s), (4.21)
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Figure 5: K matrix construction for projecting a real scattering amplitude onto the Argand circle

respect the Argand-circle condition

|aIJ(s) − i/2| = 1/2, (4.22)

which can also be stated as

Im
1

aIJ(s)
= −1. (4.23)

Computed in finite-order perturbation theory, or deduced from some model, the ampli-

tude a(s) will usually fail this requirement. However, an arbitrary amplitude a(s) can be

transformed into a unitary amplitude if we take the real part of 1/a(s) and add −i as the

imaginary part, i.e.,

â(s) =
1

Re(1/a(s)) − i
(4.24)

=
a(s)

1 − ia(s)
if a(s) is real.

For the unnormalized eigenamplitudes AIJ(s), this can be rephrased as

ÂIJ(s) = AIJ(s) + ∆AIJ(s), where ∆AIJ(s) =
i

32π

AIJ(s)2

1 − i
32πAIJ(s)

. (4.25)

This is the K-matrix unitarization scheme [46], cf. figure 5.

With this prescription, a LET amplitude A(s) = s/v2 becomes

Â(s) =
s/v2

1 − i
32πv2 s

s→∞−→ 32πi, (4.26)

so instead of rising quadratically with energy, the absolute value of Â(s) asymptotically

approaches saturation, formally a resonance at infinity.

The K-matrix scheme transforms a simple-pole amplitude, A(s) = −c/(s − M2), into

Breit-Wigner form,

Â(s) =
−c

s − M2 + iMΓ
with Γ =

c

32πM
, (4.27)
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so it is an alternate implementation of Dyson resummation for s-channel particle exchange.

If c is not a constant but depends on energy, we get a Breit-Wigner resonance with s-

dependent width. In particular, the amplitude

A(s) = −M2

v2

s

s − M2
(4.28)

is transformed into

Â(s) = −M2

v2

s

s − M2 + iMΓ s
M2

with Γ =
M2

32πv2
M. (4.29)

Eq. (4.28) has the low-energy expansion

A(s)
s→0−→ s

v2
+

s2

M2v2
= A(0)(s) + A(1)(s). (4.30)

An expansion of this form can also be treated by the inverse-amplitude method (IAM) for

unitarization [47]. The result is

Â(s) =
A(0)(s)2

A(0)(s) − A(1)(s) − i
32πA(0)(s)2

, (4.31)

which equals the (1, 1) Padé approximant, and precisely coincides with (4.29). We observe

that, in the present context, the IAM or Padé unitarization scheme is a special case of

the K-matrix scheme, where the low-energy expansion of the amplitude is identified with

the low-energy tail of a single resonance. In QCD, where the ρ meson dominates form

factors at low energy, this turns out to be a valid assumption which leads to accurate

high-energy extrapolations. In the electroweak case, physics may be different, and the

actual (unitary) weak-boson scattering amplitudes need not follow the extrapolation of the

K-matrix/IAM/Padé or any other given unitarization scheme.

In QCD, low-energy parameters can be computed, to good accuracy, by integrating

out the ρ resonance. This may also be the case for the leading resonances in electroweak

interactions (we list the necessary formulas in section 3.3), but there may well be extra

contributions that can be assigned to further resonances, or to other physical effects. For

this reason, we keep α4 and α5 as independent parameters in our implementation.

The detailed shape of resonances in weak-boson scattering may also differ from the

(running-width) Breit-Wigner that our parameterization provides. However, the experi-

mental resolution of weak-boson pair invariant masses at the LHC will be limited, so there

is little hope for precise resonance scans. A parameterization in terms of mass and width,

augmented by extra α4,5 parameters which describe deviations in the low-energy tail, is

sufficient.

Beyond a resonance peak, our expressions suggest a definite prediction, such as a

new rise of the amplitude with a definite power of s. We should emphasize that this is

misleading: the behavior in this region is arbitrary and can only be modeled, introducing

further parameters. However, any precise measurements of the high-energy tail of a heavy

resonance will be challenging, if not impossible at the LHC. The only property of unitarized

amplitudes that we really make use of is: that they do not exceed the unitarity limits.

– 21 –



J
H
E
P
1
1
(
2
0
0
8
)
0
1
0

4.5 Unitarized amplitudes

In this section, we apply the unitarization scheme defined above to the generic parame-

terization of scattering amplitudes. Collecting everything, each eigenamplitude consists

of a LO (LET) part, a NLO correction which includes the one-loop part and finite extra

contributions to the α parameters, and resonance terms:

AIJ(s) = A
(0)
IJ (s) + A

(1)
IJ (s) +

∑

R=σ,φ,ρ,f,a

AR
IJ(s) (4.32)

which we write in the form

AIJ(s) = A
(0)
IJ (s) + FIJ (s) +

GIJ(s)

s − M2
, (4.33)

where FIJ(s) is finite, and GIJ(s) is proportional to s (vector), or s2 (scalar, tensor).

According to the prescription in the previous section, the unitarized amplitude becomes

ÂIJ(s) =
AIJ(s)

1 − i
32πAIJ(s)

= A
(0)
IJ (s) + ∆AIJ(s), (4.34)

where the correction to the LET amplitude is given by

∆AIJ(s) = 32πi

(

1 +
i

32π
A(0)(s) +

s − M2

i
32π GIJ(s)−(s − M2)

[

1 − i
32π (A(0)(s) + FIJ(s))

]

)

.

(4.35)

In figure 6 we draw the absolute values of the resulting unitarized eigenamplitudes,

including the LET part A
(0)
IJ (4.13). Since the resonances have definite spin and isospin

quantum number assignments, each plot contains exactly one curve with a resonance, while

the other curves are non-resonant. The resonance masses MR (R = σ, φ, ρ, f, a) have been

set to 1 TeV, and the couplings gR to unity. The unitarization prescription smoothly cuts

off the amplitudes, so their absolute values do not exceed the limit 32π ≈ 100. Some of

the amplitudes (e.g., Aρ
00) contain terms rising like a power with the energy and eventually

saturate this bound, while others (e.g., Aρ
13) rise logarithmically at most, so at accessible

energies they stay much below this limit.

For the scalar isosinglet σ, the choice gσ = 1 corresponds to the SM with a heavy

Higgs. In this case, unitarity is restored already by the scalar resonance exchange. Hence,

as long as Mσ is below about 1.2 TeV, the asymptotic values of all Aσ
IJ stay below the

limit of 32π. At tree level, they are constants that depend on the ratio M2
σ/v2. This is

slightly modified by loop corrections and by the unitarization prescription. For gσ 6= 1, the

cancellations are incomplete, and the amplitudes Aσ
IJ behave in the same way as the other

amplitudes.

Several of the curves exhibit a zero, which in the logarithmic plots manifests itself as

a sharp down-pointing spike. In fact, in our parameterization this happens for all resonant

amplitudes, with the exception of the SM Higgs case. The reason is negative interference

between the resonant propagator and the contact term; the latter is necessary for satisfying

the LET and rises with a higher power of the energy. For vector resonances, cancellation
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Figure 6: Unitarized spin-isospin-eigenamplitudes for Goldstone-boson scattering. In each plot,

we display the eigenamplitudes for a definite spin and isospin value, one curve for each of the five

possible resonances σ, φ, ρ, f, a. The resonance masses are fixed at 1 TeV, and their couplings to

Goldstone bosons have been set to unity.

typically occurs at very high energies (above 10 TeV), while for tensor resonances the effect

is visible in the energy range that we have chosen for our plots. However, if such a zero

occurs beyond the resonance mass, it should not be taken seriously, because in this range

the amplitude contains further, undetermined contributions, and the energy behavior of

the contact term as given by our formulae is not a prediction. Only if this zero appears

below the resonance a dip should actually be expected. This is the case for A20 in the

presence of a scalar isoquintet.
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Figure 7: Real part of the eigenamplitudes |AIJ (s)|, each with the corresponding resonance(s)

switched on; MR = 1 TeV.

The analytic behavior of the amplitudes is transparent if we plot the real part, which

vanishes on a resonance. This is illustrated in figure 7. All curves cross zero at 1 TeV, the

resonance mass. Beyond this, they rise and asymptotically approach zero again. This is

the resonance at infinity generated by the unitarization procedure. The exception is the σ

resonance which approaches a constant, since in this model (the SM) there is no unitarity

problem.
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Ares, angular dependence
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1
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Figure 8: Angular dependence of the amplitudes |AI(s, t, u)| for I = 0, 1, 2, each with the corre-

sponding resonance(s) switched on and evaluated at
√

s equal to the resonance mass.

For a concrete Monte-Carlo implementation, we need the unitarized amplitudes for

physical states, e.g., w+w−, zz, etc. Therefore, we first translate the spin-isospin eigenam-
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plitudes back into corrections to the isospin eigenamplitudes as functions of s, t, u,

∆A0(s, t, u) = ∆A00(s)P0(s, t, u) + ∆A02(s) 5P2(s, t, u), (4.36a)

∆A1(s, t, u) = ∆A11(s) 3P1(s, t, u) + ∆A13(s) 7P3(s, t, u), (4.36b)

∆A2(s, t, u) = ∆A20(s)P0(s, t, u) + ∆A22(s) 5P2(s, t, u). (4.36c)

The result is shown in figure 8. The plot clearly exhibits the characteristic angular depen-

dence of the resonances with J = 0, 1, 2, respectively, while the continuum background that

we have included is negligible for s = M2. The nonresonant part is important, however,

to describe the off-peak amplitude behavior.

This, in turn, is translated into corrections to the individual scattering amplitudes,

∆A(w+w− → zz) =
1

3
∆A0(s, t, u) − 1

3
∆A2(s, t, u) (4.37a)

∆A(w+z → w+z) =
1

2
∆A1(s, t, u) +

1

2
∆A2(s, t, u) (4.37b)

∆A(w+w− → w+w−) =
1

3
∆A0(s, t, u) +

1

2
∆A1(s, t, u) +

1

6
∆A2(s, t, u) (4.37c)

∆A(w+w+ → w+w+) = ∆A2(s, t, u) (4.37d)

∆A(zz → zz) =
1

3
∆A0(s, t, u) +

2

3
∆A2(s, t, u) (4.37e)

Unitarization breaks naive crossing symmetry, since it is applied only in the s-channel.

Explicitly, we obtain

∆A(w+w− → zz) = 8

[

α5 +
v4

24s2
(∆A00(s) − ∆A20(s))

− 5v4

12s2
(∆A02(s) − ∆A22(s))

]

s2

v4

+ 4

[

α4 +
5v4

4s2
(∆A02 − ∆A22)

]

t2 + u2

v4
(4.38a)

∆A(w+z → w+z) = 4

[

α4 +
v4

8s2
∆A20(s) −

5v4

4s2
∆A22(s)

]

s2

v4

+ 8

[

α5 −
3v4

16s2
∆A11(s) +

15v4

16s2
∆A22(s)

]

t2

v4

+ 4

[

α4 +
3v4

8s2
∆A11(s) +

15v4

8s2
∆A22(s)

]

u2

v4
(4.38b)

∆A(w+w− → w+w−) = 4

[

α4 + 2α5 +
v4

24s2
(2∆A00(s) + ∆A20(s))

− 5v4

12s2
(2∆A02(s) + ∆A22(s))

]

s2

v4

+ 4

[

α4 + 2α5 +
v4

8s2
(10∆A02(s) − 3∆A11(s) + 5∆A22(s))

]

t2

v4

+ 8

[

α4 +
v4

16s2
(10∆A02(s) + 3∆A11(s) + 5∆A22(s))

]

u2

v4

(4.38c)
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∆A(w+w+ → w+w+) = 8

[

α4 +
v4

8s2
(∆A20(s) − 10∆A22(s))

]

s2

v4

+ 4

[

α4 + 2α5 +
15v4

4s2
∆A22(s)

]

t2 + u2

v4
(4.38d)

∆A(zz → zz) = 8

[

α4 + α5 +
v4

24s2
(∆A00(s) + 2∆A20(s))

− 5v4

12s2
(∆A02(s) + 2∆A22(s))

]

s2

v4

+ 8

[

α4 + α5 +
5v4

8s2
(∆A02(s) + 2∆A22(s))

]

t2 + u2

v4
(4.38e)

Here, the coefficient functions ∆AIJ(s) are determined by decomposing the results from

section 4.3 according to (4.34) and inserting this into the unitarization formula (4.35).

Adding the above correction terms to the LET scattering amplitudes (4.7a)–(4.7e),

we have a complete and unitary parameterization of on-shell Goldstone scattering. The

parameterization depends on α4 and α5, on a renormalization scale µ, and on the mass

and width parameters of the five possible resonances.

By construction, the unitarization algorithm is applicable only for (on-shell) 2 → 2

scattering processes, i.e., V V → V V with V = W,Z. For the corresponding vertices, the

unitarization correction technically acts as a form factor. However, quartic vector boson

couplings also occur in 1 → 3 processes V ∗ → V V V which are accessible as triple vector

boson production at the LHC. In this case, at least one of the electroweak gauge bosons

is far off-shell. For defining a unitarization prescription, or in fact any non-SM scenario,

field-theoretical consistency then forces us to consider the whole process where this off-shell

amplitude is embedded in qq̄ → V V V . We have to apply the unitarity conditions for a 2 →
3 process, which are different from the 2 → 2 unitarity conditions we have been discussing

so far. However, we can verify by direct calculation that at the LHC there is no actual

sensitivity to the high-energy region in triple-boson production, where unitarity could

matter: In figure 9, the asymptotic behavior of WW and ZZ invariant mass distributions

in the Higgs case (unitary) and the no-Higgs case (unitarity-violating) is indistinguishable.

Hence, in the Monte Carlo implementation it suffices to apply unitarization for 2 → 2

scattering only and leave the 1 → 3 case unmodified. This might be different for a hadron

collider with higher energy and/or luminosity than the LHC.

4.6 Off-shell Implementation

For realistic calculations, we want to transform the unitarized Goldstone scattering am-

plitudes into matrix elements for off-shell weak-boson scattering. We first note that the

complete SM without a Higgs and without anomalous couplings, already yields the LET

result for weak-boson scattering. In order to avoid double-counting, we therefore have to

remove the LET part from any extra contributions that we add to the theory. This is

achieved by considering only the correction terms (4.37a)–(4.37e) instead of the complete

unitarized amplitudes.
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Figure 9: Triple vector boson production at the LHC with a cut pT (W/Z) > 10 GeV. The

unweighted event samples correspond to 300 fb−1 of integrated luminosity. The red solid curve is

the Standard Model with a Higgs boson of 500 GeV, the green dashed curve the Standard Model

with infinite Higgs mass, but no unitarization. The second case asymptotically violates unitarity.

The chiral Lagrangian with NLO parameters (i.e., α4 and α5) provides an off-shell

formulation for the low-energy effective theory. We can determine Feynman rules and

compute complete matrix elements of 2 → 6 fermion processes which include weak-boson

interactions with anomalous couplings. The Feynman rules of four-boson couplings depend

on α4 and α5. In unitarity gauge, they are derived from the quartic gauge interactions

LQGC = e2
[

gγγ
1 AµAνW−

µ W+
ν − gγγ

2 AµAµW−νW+
ν

]

+ e2 cw

sw

[

gγZ
1 AµZν

(

W−
µ W+

ν + W+
µ W−

ν

)

− 2gγZ
2 AµZµW−νW+

ν

]

+ e2 c2
w

s2
w

[

gZZ
1 ZµZνW−

µ W+
ν − gZZ

2 ZµZµW−νW+
ν

]

+
e2

2s2
w

[

gWW
1 W−µW+νW−

µ W+
ν − gWW

2

(

W−µW+
µ

)2
]

+
e2

4s2
wc4

w

hZZ(ZµZµ)2,

(4.39)

where the SM values of the couplings2 are given by

gV V ′

1 = gV V ′

2 = 1 (V V ′ = γγ, γZ,ZZ,WW ), hZZ = 0. (4.40)

If we include the dependence on all five isospin-symmetric NLO chiral parameters

αi (3.13a)–(3.13e), the deviations from the SM values are

∆gγγ
1 = ∆gγγ

2 = 0 ∆gγZ
1 = ∆gγZ

2 =
g′2

c2
w − s2

w

α1 +
g2

c2
w

α3 (4.41a)

∆gZZ
1 = 2∆gγZ

1 +
g2

c4
w

α4 ∆gZZ
2 = 2∆gγZ

1 − g2

c4
w

α5 (4.41b)

∆gWW
1 = 2c2

w∆gγZ
1 + g2α4 ∆gWW

2 = 2c2
w∆gγZ

1 − g2 (α4 + 2α5) (4.41c)

hZZ = g2 (α4 + α5) . (4.41d)

2In these expressions, the numerical values of the electroweak gauge couplings and the weak mixing

angle depend on the precise definition of the electroweak renormalization scheme.
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We can now construct a generic off-shell parameterization of weak-boson scattering

that corresponds to the unitary on-shell Goldstone scattering amplitudes (4.37a)–(4.37e).

To this end, we derive modified Feynman rules which do not just depend on the external

legs of a vertex, but also on their orientation as either incoming or outgoing. Specifically,

we replace the dependence on the constant parameters α4 and α5 by form factors which

depend on s.

The Lorentz factors of the Feynman rules follow from the Lagrangian (4.39), and the

LO prefactors and NLO shifts are given by (4.40) and (4.41a)–(4.41d), respectively. Given

a quartic vector-boson vertex with incoming Lorentz indices µ, ν and outgoing indices ρ, σ,

we always have three independent Lorentz factors which correspond as follows to a definite

angular and energy dependence,

gµνgρσ → s2, gµρgνσ → t2, gµσgνρ → u2, (4.42)

respectively. This follows from the fact that in the high-energy limit of the amplitude, the

longitudinal polarization vectors ǫα are approximately proportional to the momenta pα,

where α = µ, ν, ρ, σ.

We construct the unitarization corrections by replacing the α parameters in the pref-

actors that multiply the Lorentz factors (4.42) by the expressions that multiply the corre-

sponding term s2, t2, or u2 in (4.37a)–(4.37e). For an explicit example, let us consider the

WWZZ interaction. For the vertex orientations ZZ → W+W− and W+W− → ZZ, we

obtain the Feynman rule

gµνgρσ × (−2)e2 c2
w

s2
w

[

1 + 2∆gγZ
1

− g2

c4
w

(

α5 +
v4

24s2
(∆A00(s) − ∆A20(s)) −

5v4

12s2
(∆A02(s) − ∆A22(s))

)]

+ gµρgνσ × e2 c2
w

s2
w

[

1 + 2∆gγZ
1 +

g2

c4
w

(

α4 +
5v4

4s2
(∆A02(s) − ∆A22(s))

)]

+ gµσgνρ × e2 c2
w

s2
w

[

1 + 2∆gγZ
1 +

g2

c4
w

(

α4 +
5v4

4s2
(∆A02(s) − ∆A22(s))

)]

, (4.43)

while for the orientations W+Z → W+Z and W−Z → W−Z, we get instead

gµνgρσ × e2 c2
w

s2
w

[

1 + 2∆gγZ
1 +

g2

c4
w

(

α4 +
v4

8s2
∆A20(s) −

5v4

4s2
∆A22(s)

)]

+ gµρgνσ × (−2e2)
c2
w

s2
w

[

1 + 2∆gγZ
1 − g2

c4
w

(

α5 −
3v4

16s2
∆A11(s) +

15v4

16s2
∆A22(s)

)]

+ gµσgνρ × e2 c2
w

s2
w

[

1 + 2∆gγZ
1 +

g2

c4
w

(

α4 +
3v4

8s2
∆A11(s) +

15v4

8s2
∆A22(s)

)]

. (4.44)

In each term, s denotes the c.m. energy of the incoming vector-boson pair. For the other

vertices, the construction is analogous, and straightforward.

As a first result, we can use the above modified Feynman rules to compute on-shell

scattering amplitudes for physical W and Z bosons. These combine the features of the
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chosen resonance model with SM effects such as photon and W/Z exchange. Since on-shell

initial vector bosons cannot be prepared in practice, we defer this discussion to appendix E.

Such an algorithm breaks naive crossing symmetry, but this is natural since the uni-

tarization scheme for 2 → 2 amplitudes already breaks naive crossing symmetry. The

unitarization correction technically introduces a form factor, which physically corresponds

to an infinite partial resummation of Feynman diagrams. For the modified amplitudes

crossing symmetry can no longer be applied by simply exchanging external momenta be-

tween initial and final state. Instead, the amplitudes have to satisfy analyticity conditions.

For the simplified case of a single resonance, it can be shown that these conditions lead

to the IAM result [2], which in this case also coincides with the K-matrix scheme. In the

general case, the correct analytic behavior of the amplitude can only be determined in the

full underlying theory, which is of course impossible for electroweak interactions today.

In a practical implementation, for a given vertex we implement all possible orientations

of the time arrow as alternatives, and determine the orientation that is actually realized

when we insert the vertex into a physical process. This is straightforward to do for an

automatic matrix-element generator.

Two sources for ambiguities appear in this construction. (i) The GBET relates Gold-

stone scattering amplitudes to weak-boson scattering amplitudes only in the high-energy

limit, and only for longitudinal polarization. We do not specify couplings to transversal

gauge bosons, which are not directly related to EWSB and formally subleading in the

physics of strongly interacting weak bosons. Corrections to the GBET therefore can be

computed only up to further free parameters. Keeping this in mind, we translate the Gold-

stone amplitudes to weak-boson amplitudes using the leading-order GBET.3 (ii) Strictly

speaking, the Mandelstam variables s, t, u in form factors are defined for on-shell scatter-

ing of massless particles. t, u can be replaced by Lorentz factors which are unambiguous,

but in the off-shell continuation, the subenergy squared s is evaluated for massive off-shell

W/Z bosons. This affects the unitarization corrections, but these are scheme-dependent

anyway. Their main property — to cancel any unphysical rise of subamplitudes — is pre-

served off-shell. It also affects the location of resonance poles. However, as discussed in

section 3.2, off-shell effects in the latter are accounted for by higher-dimensional operators

and translate into corrections to α4,5. Finally, we recall that the off-shell continuation of

W/Z propagators is controlled by electroweak gauge invariance. We keep SU(2)L ×U(1)Y
symmetry manifest in the gauge and fermion sectors by using covariant derivatives, so this

is not an issue.

As a cross-check, we can compute 2 → 6 fermion processes for the ordinary SM with

a Higgs boson. In our parameterization, this is the chiral Lagrangian with α4 = α5 = 0

and a σ resonance with gσ = 1. The form factors for the WWZZ, WWWW , and ZZZZ

vertices contain exactly the Higgs propagator factors that we would have obtained with

the Higgs boson as an ordinary particle. In the s-channel, the propagator pole turns out

3If we adopt the EWA, part of the difference w.r.t. complete amplitudes is formally of the same order as

the GBET corrections. However, the EWA strongly affects kinematics and ignores a large set of irreducible

background diagrams, so the numerical impact of this approximation for LHC analyses is much more

important than model-dependent ambiguities in corrections to the GBET.
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to be regularized by a running width Γθ(s) × s/M2, which is a sensible treatment of the

width of a heavy Higgs boson in SM scattering amplitudes [48]. So, despite the fact that

we have used the leading-order GBET, our off-shell formulation exactly reproduces the

tree-level SM result, both on-shell and off-shell. The only missing parts are double-Higgs

and Higgs-fermion couplings (see e.g. [49]), but those couplings do not contribute to the

processes we are interested in.

5. LHC processes

5.1 Monte-Carlo simulation

We have implemented our parameterization of vector-boson scattering in the multi-particle

event generator WHIZARD [27, 28]. The program generates matrix elements for partonic

processes via optimized helicity amplitudes while avoiding the redundancies inherent in a

Feynman diagram expansion. These optimized matrix elements together with a highly effi-

cient phase-space setup enable the simulation of six and eight-particle final states. WHIZARD

contains the infrastructure for simulations of complex collider environments like structured

beams, parton shower, and interfaces to fragmentation and hadronization.

As the starting point for the implementation in WHIZARD, we have chose the SM ex-

tension with anomalous three-boson and four-boson couplings which has been used for the

simulation of anomalous triple and quartic gauge operators [20, 50, 51]. The algorithm for

the symbolic generation of the matrix elements in WHIZARD, which is especially suited for

the inclusion of beyond the Standard Model (BSM) physics [52], allows for the insertion of

operators in specific time directions necessary by the crossing-symmetry breaking effects

of the K-matrix unitarization prescription.

5.2 Comparison with the effective W approximation (EWA)

In 2 → 6 fermion processes that contain weak-boson scattering (figure 1) the W/Z bosons

that initiate the interaction are represented by their propagators with a spacelike mo-

mentum. The main contribution comes from the region with small virtuality, and we

are interested in the region of large c.m. energy of the vector boson pair. In this region,

the virtualities and the masses of the vector bosons induce only small corrections to the

amplitude, so the initial vector bosons can be treated as approximately on-shell.

We can thus approximate the dominant Feynman graphs by a convolution of massless

splitting (of the initial quark into a quark and a vector boson) with the vector-boson

interaction, which is called effective W approximation (EWA) [25]:

σ(q1q2 → q′1q
′
2V

′
1V

′
2) ≈

∑

λ1,λ2

∫

dx1 dx2 F λ1

q1→q′
1
V1

(x1)F λ2

q2→q′
2
V2

(x2)σλ1λ2

V1V2→V ′

1
V ′

2

(x1x2s) (5.1)

This has to be convoluted with the quark structure functions to yield the cross section for

the pp initial state.

Eq. (5.1) contains integrations over x1,2, the energy fractions of the vector bosons that

are radiated from the initial quarks, and a sum over vector-boson helicities. In contrast
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to the analogous Weizsäcker-Williams approximation for photons, there is a longitudinal

polarization direction in addition to the two transversal polarization directions. Explicitly,

the structure functions are

F+
q→q′V (x) =

1

16π2

(vV − aV )2 + (vV + aV )2x̄2

x

[

ln

(

p2
⊥,max + x̄m2

V

x̄m2
V

)

−
p2
⊥,max

p2
⊥,max + x̄m2

V

]

(5.2a)

F−
q→q′V (x) =

1

16π2

(vV + aV )2 + (vV − aV )2x̄2

x

[

ln

(

p2
⊥,max + x̄m2

V

x̄m2
V

)

−
p2
⊥,max

p2
⊥,max + x̄m2

V

]

(5.2b)

F 0
q→q′V (x) =

v2
V + a2

V

8π2

2x̄

x

p2
⊥,max

p2
⊥,max + x̄m2

V

(5.2c)

with x̄ ≡ 1 − x. The vector and axial couplings for a fermion branching into a W are

vW =
g

2
√

2
, aW =

g

2
√

2
. (5.3)

For Z emission, this is replaced by

vZ =
g

2 cos θw

(

t3 − 2q sin2 θw

)

, aZ =
g

2 cos θw
t3, (5.4)

where t3 = ±1
2 is the fermion isospin, and q its charge.

These structure functions depend on a transverse-momentum cutoff p⊥,max. The kine-

matical limit for the cutoff is

p⊥,max ≤ x̄
√

s/2. (5.5)

In the derivation of (5.2a)–(5.2c), one integrates over p⊥ under the assumption that it is

small compared to the subprocess energy, so the subprocess cross section does not depend

on it. For the longitudinal structure function that we are most interested in, this can be

justified because the limit p⊥,max → ∞ is finite. This structure function is concentrated

near p⊥ = x̄mV . The transverse structure functions have a logarithmic divergence in

p⊥,max, so the cutoff is needed there. This already suggests that the EWA is more reliable

for longitudinal than for transversal vector bosons.

In figure 10, we display the structure functions of W and Z bosons, separately for

positive, longitudinal, and negative helicity. The emitting quark has been chosen to be an

up-type quark; for down-type quarks or electrons the Z curves have to be renormalized ac-

cording to the respective charges. For antiquarks or positrons, the transverse polarizations

have to be interchanged. The plots illustrate the fact that emission of a W or Z, in partic-

ular at high energies, is more likely for a transversally polarized vector boson. In effect, the

production of longitudinally polarized V V pairs which couple to the symmetry-breaking

sector is suppressed compared to this irreducible background.

Figure 11 exemplifies the differences between the exact result for qq → qq + V V pro-

cesses which contain resonant weak-boson scattering. To make a meaningful comparison,

we first recall that in the EWA the initial vector bosons are on-shell, while in the exact
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Figure 10: EWA structure functions for W (left) and Z (right) emission from an up-type quark,

for
√

s = 2 TeV and p⊥,max given by (5.5).
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Figure 11: Comparison of the exact (red) and EWA (green, dashed) results for weak-boson scat-

tering for processes of the type q1q2 → q′1q
′
2V V for

√
sq1q2

= 2 TeV. Upper line: scalar isosin-

glet resonance, lower line: tensor isosinglet resonance. The resonance masses and couplings are

MR = 1 TeV and gR = 1, respectively, the amplitudes are unitarized by the K-matrix scheme of

section 4.5, and a pT cut of 30 GeV has been applied to the vector bosons.

process they are off shell. The on-shell amplitudes have a Coulomb singularity due to

photon and Z,W exchange. In particular, an on-shell cross section with photon exchange
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Figure 12: Feynman graphs that contribute an irreducible background to weak-boson scattering

in 2 → 6 fermion processes, e.g. double final state and double initial state radiation, as well as

t-channel like diagrams.

is infinite, while Z/W exchange yields a Coulomb peak proportional to ŝ2/M4
V . Here, ŝ is

the c.m. energy of the vector-boson subsystem, equal to the invariant mass squared M2
V V

of the outgoing vector bosons. To reduce this effect which in the exact result is regulated

by the vector-boson virtuality, we cut the pT of the outgoing vector bosons at 30 GeV.

A particular choice of this cut allows us to approximate the high-energy end of the

MV V distribution for the SM with a heavy Higgs (figure 11, top) quite well [25]. This is

misleading, however: with the same cut, the prediction of the tensor resonance case (fig-

ure 11, lower left) with its unitarity saturation beyond the peak is considerably worse. If we

are looking at ZZ → WW instead of WW → ZZ, the EWA background undershoots the

exact value (figure 11, lower right). More importantly, while the peak can be approximated

up to better than a factor 2, the background is predicted with less accuracy. Since MV V

cannot be reconstructed experimentally (apart from ZZ final states), sideband subtraction

is not possible, this significantly affects the analysis.

Part of the deviation is due to the kinematical simplifications inherent in the derivation,

which can be improved in principle [53, 18]. Unfortunately, this only marginally improves

the EWA, since the main error comes from the existence of irreducible background diagrams

for on-shell vector boson pair + jets production, and additional irreducible background for

the complete six-fermion process, cf. figure 12, which cannot be accounted for in this way.

Off-shell, those background diagrams are connected to the signal diagrams by gauge invari-

ance and cannot be neglected: simply omitting them would disrupt detailed cancellations,

similar to the familiar s/t-channel cancellation in W pair production [54].

5.3 Complete simulation

The implementation of the off-shell continued amplitudes in the Monte-Carlo generator

WHIZARD allows us to get rid of the EWA and to simulate event samples for the complete

process pp → qq′ + 4f , where the four additional fermions are the decay products of the

vector bosons, or come from the irreducible background. Using, e.g., PYTHIA for parton

showering and fragmentation, this results in physical LHC events that can be analyzed by

detector simulation and eventually compared to real data.

For illustration, in figure 13 we present the result of a parton-level simulation of
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Figure 13: Unweighted event samples for pp → ud + e+νee
−ν̄e. Upper: Invariant mass of the

e+νee
−ν̄e system. Lower: Azimuthal distance of the charged leptons. The red histogram (hatched)

corresponds to a model with a vector resonance (Mρ = 850 GeV and gρ = 1). The green histogram

(filled) is the LET result. Both models have been unitarized by the K-matrix scheme. Cuts:

p⊥(ℓν) > 30 GeV, |η(ℓν)| < 1.5, θ(u/d) > 0.5◦. The integrated luminosity is 4 × 225 fb−1 (the

factor 4 accounts for the sum over e, µ).

WW/ZZ scattering, using complete six-fermion matrix elements. In these plots, we com-

pare the effect of a 850 GeV vector resonance with the nonresonant (unitarized) LET

model, which serves as a reference model for the higgsless case. In the four-lepton invari-

ant mass, the resonance is clearly visible. However, this quantity is not an observable. The

azimuthal distance of the two decay leptons is observable; there, vector-resonance exchange

in s- and t-channel leads to a significant excess.

– 34 –



J
H
E
P
1
1
(
2
0
0
8
)
0
1
0

 1

 10

 100

 0  200  400  600  800  1000  1200  1400  1600

dσ
/d

 M
e+

e-  µ
+
 µ

- [f
b]

Me+e- µ+ µ-(GeV)

pp -> e+e- µ+ µ- d u, no Higgs, a4 = a5 = 0

with K matrix
without K matrix

 1

 10

 100

 1000

 0  200  400  600  800  1000  1200  1400  1600

dσ
/d

 M
e+

e-  µ
+
 µ

- [f
b]

Me+e- µ+ µ-(GeV)

pp -> e+e- µ+ µ- d u, no Higgs, a4=0.5, a5=0.2

with K matrix
without K matrix

Figure 14: Complete simulation for the process pp → eeµµdu without an SM Higgs, with and

without unitarization in red (full) and green (dashed), respectively. Left: without α parameters,

summed over lepton flavors, pT > 20GeV for the fermions, right: with α parameters, exclusive

lepton flavors, pT > 40GeV.

Since the focus of the present paper is on the unitarization of complete six-fermion am-

plitudes, it is instructive to evaluate the effect of unitarization on a complete parton-level

simulation. In figure 14, we display the process pp → e+e−µ+µ−ud in the absence of any

resonance, with and without unitarization. The underlying signal is mainly W+W− → ZZ

scattering. If all α parameters vanish, there is already a difference in the region of high

invariant four-lepton (i.e., ZZ) mass. This difference can become much more pronounced

if nonzero values for the α parameters are chosen. We conclude that determining α param-

eter values on the basis of un-unitarized matrix elements, can significantly overestimate

the sensitivity due to unphysical excess events in the high-mass region. (Incidentally, an

analysis based on unitary on-shell amplitudes using the EWA would also overestimate the

sensitivity, for the same reason.) For a meaningful measurement at the LHC, it is essential

that the Monte-Carlo simulation employs an off-shell parameterization in the context of a

complete matrix-element calculation with unitarity properly taken into account.

A realistic study would be based on a sum over all possible final states with parton

shower and hadronization, using cuts and distributions in observable quantities. Further-

more, it would include a complete account of background and detector effects. A cut-based

analysis strategy was proposed in refs. [8, 9]. An ATLAS study that makes use of the

parameterization of the present paper is currently under way [55].

6. Summary and conclusions

We have described a generic approach to extrapolating vector-boson scattering into the

energy range where no perturbative predictions exist. Nontrivial features of the amplitudes

are possible, which will likely appear as resonances. In addition to the classical alternative

of a heavy scalar-isoscalar (Higgs) or a vector-isovector (technirho or W ′) resonance, we

account for scalar-isotensor resonances which are present in extended models, and for

tensor resonances that could, for instance, be associated with gravity in extra dimensions.

Furthermore, we connect the model-dependent part to the model-independent low-energy
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effective theory and keep this relation transparent in the implementation. Unitarization of

the on-shell amplitudes avoids the problem of unphysical behavior at the highest energies

that plagues a naive tree-level approach.

Our approach is economical in the number of free parameters, but intended as a suffi-

ciently general description of those energy regions where the LHC will have sensitivity. If

necessary, refinements of the models, such as recurring resonances or more exotic behavior

of the amplitudes, are straightforward to add. The resulting amplitudes are translated

into effective form-factors for vector-boson vertices in unitarity gauge. This allows for an

implementation in universal Monte-Carlo event generators, which we have realized for the

case of the WHIZARD event generator.

While the leading electroweak loop corrections for vector-boson scattering are included,

QCD corrections are not yet implemented. These have been considered in ref. [56] and

should be combined with the effects modeled by our approach.

With the event generator at hand, model-independent studies and analyses of vector-

boson scattering, both in SM extensions and in Higgsless models, become feasible. No

approximations beyond those inherent in the modeling are involved, as it is essential for

unbiased data analysis. A particular feature of our implementation is the smooth transition

to the SM case (with a Higgs boson) or, alternatively, to a featureless LET model of strong

WW scattering without resonances, respecting unitarity. In data analysis, the signal can

be defined as the deviation with respect to either one of those reference models.
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A. Conventions and algebra

A.1 SU(2) algebra

Throughout this paper, we use boldface notation for objects that are defined in the adjoint

of SU(2), e.g.,

Wµ = W a
µ

τa

2
(A.1)

with the Pauli matrices τa (a = 1, 2, 3), and summation over a understood.

For describing isospin quintet resonances, we introduce tensor products of Pauli ma-

trices:

τ++ = τ+ ⊗ τ+ (A.2)

τ+ =
1

2
(τ+ ⊗ τ3 + τ3 ⊗ τ+) (A.3)

τ0 =
1√
6
(τ3 ⊗ τ3 − τ+ ⊗ τ− − τ− ⊗ τ+) (A.4)
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τ− =
1

2
(τ− ⊗ τ3 + τ3 ⊗ τ−) (A.5)

τ−− = τ− ⊗ τ− (A.6)

These are normalized:

tr
[

τ++τ−−
]

= tr
[

τ+τ−
]

= tr
[

τ0τ0
]

= 1 (A.7)

Isospin singlet:

τaa ≡ τa ⊗ τa = τ3 ⊗ τ3 + 2τ+ ⊗ τ− + 2τ− ⊗ τ+ (A.8)

Tracing this with something else gives

tr [(A ⊗ B)τaa] = 2 tr [AB] , (A.9)

in particular

tr
[

τ++τaa
]

= tr
[

τ+τaa
]

= tr
[

τ0τaa
]

= 0, tr
[

τ33τaa
]

= 4, tr
[

τaaτ bb
]

= 12.

(A.10)

Furthermore we need:

tr
[

τ0(τ3 ⊗ τ3)
]

=
4√
6

tr
[

τ0(τ+ ⊗ τ− + τ− ⊗ τ+)
]

= − 2√
6

(A.11)

A.2 Goldstone bosons and gauge fields

We define the Goldstone scalar triplet w1,2,3 or, alternatively, w+, w−, z such that

w1 =
1√
2
(w+ + w−) w+ =

1√
2
(w1 − iw2)

w2 =
i√
2
(w+ − w−) w− =

1√
2
(w1 + iw2) (A.12)

and w3 = z. Contractions:

w ≡ waτa =
√

2(w+τ+ + w−τ−) + zτ3 (A.13)

(w)2 = w+w− + w−w+ + zz (A.14)

The Higgs-field matrix is given by

Σ = exp

(

− i

v
w

)

(A.15)

The covariant derivative of the Higgs field is

DΣ = ∂Σ + igWΣ − ig′Σ

(

B
τ3

2

)

. (A.16)

Unitary gauge would mean w ≡ 0, i.e., Σ ≡ 1. Herewith, we define the vector field

V = Σ(DΣ)† = −(DΣ)Σ† , (A.17)
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which is in the adjoint representation of SU(2)L, and is a linear combination of Pauli

matrices. Hence, tr [V] = 0. Note that V is antihermitian, V† = −V.

Gauge fields for the electroweak and strong interactions are defined such that they

transform under SU(2)L × U(1)Y as W → ULWU †
L,

Wµν = ∂µWν − ∂νWµ + ig[Wµ,Wν ], (A.18)

Bµν = Σ (∂µBν − ∂νBµ)
τ3

2
Σ†; (A.19)

furthermore there is the QCD gauge field Gµν = Ga
µν

λa

2 .

In the gaugeless limit, the expansion in terms of Goldstone fields is V ⇒ i
v∂wkτk +

O(v−2). Expressing this in terms of charge eigenstates, we derive

V =
i

v

[√
2∂w+τ+ +

√
2∂w−τ− + ∂zτ3

]

− 1

v2

[√
2w+

↔
∂ zτ+ −

√
2w−

↔
∂ zτ− − w+

↔
∂w−τ3

]

+ O(v−3) (A.20)

and thus

tr [VµVν ] = − 2

v2

(

∂µw+∂νw− + ∂µw−∂νw
+ + ∂µz∂νz

)

+ O(v−3) (A.21)

Hence,

−v2

4
tr [V ·V] = ∂w+∂w− +

1

2
∂z∂z (A.22)

In the notation used for couplings to isospin quintets, we have

1

2
V{µ ⊗ Vν} = − 1

v2

{

2∂µw+∂νw
+τ++ + 2∂µw−∂νw

−τ−−

+
√

2
(

∂µw+∂νz + ∂νw+∂µz
)

τ+ +
√

2
(

∂µw−∂νz + ∂νw
−∂µz

)

τ−

+ ∂µz∂νzτ3 ⊗ τ3 +
(

∂µw+∂νw
−+∂µw−∂νw+

)

(τ+ ⊗ τ− + τ− ⊗ τ+)

}

(A.23)

And,

Vµ ⊗ Vµ = − 1

v2

{

2∂w+ · ∂w+τ+++2∂w− · ∂w−τ−−+2
√

2∂w+ · ∂zτ++2
√

2∂w− · ∂zτ−

+ ∂z · ∂zτ33 + 2∂w+ · ∂w−
(

τ+− + τ−+
)

}

(A.24)

A.3 Tensor fields

A massive tensor field fµν is subject to the conditions

fµν = f νµ, fµ
µ = 0, ∂µfµν = ∂νf

µν = 0. (A.25)
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Its spin sum is given by

∑

λ

ǫ∗λ
µνǫρσ

λ =
1

2
(PµρP νσ + PµσP νρ) − 1

3
(PµνP ρσ) , (A.26)

where

Pµν(k) = gµν − kµkν

M2
. (A.27)

The free Lagrangian is

Lf = Lkin − M2

2
fµνf

µν (A.28)

where the kinetic part corresponds to the spin sum (A.26).

A.4 Integrals in spin-isospin eigenamplitudes

To get compact expressions for the spin-isospin eigenamplitudes, we define the following

integrals:

SJ(s) =

∫ 0

−s

dt

s

t2

t − M2
P0(t, s, u)PJ (s, t, u) (A.29a)

PJ (s) =

∫ 0

−s

dt

s

t

t − M2
P1(t, s, u)PJ (s, t, u) (A.29b)

DJ(s) =

∫ 0

−s

dt

s

t2

t − M2
P2(t, s, u)PJ (s, t, u) (A.29c)

The integrals over u2/(u − M2) are (−1)J times those over t2/(t − M2).

Explicit expressions for these integrals are:

S0(s) = M2 − s

2
+

M4

s
log

M2

s + M2
(A.30a)

S1(s) = 2
M4

s
+

s

6
+

M4

s2
(2M2 + s) log

M2

s + M2
(A.30b)

S2(s) =
M4

s2

(

6M2 + 3s
)

+
M4

s3

(

6M4 + 6M2s + s2
)

log
M2

s + M2
(A.30c)

S3(s) =
M4

3s3

(

60M4 + 60M2s + 11s2
)

+
M4

s4
(2M2 + s)

(

10M4 + 10M2s + s2
)

log
M2

s + M2

(A.30d)

P0(s) = 1 +
2s + M2

s
log

M2

s + M2
(A.30e)

P1(s) =
M2 + 2s

s2

(

2s + (2M2 + s) log
M2

s + M2

)

(A.30f)

D0(s) =
1

2
(2M2 + 11s) +

1

s
(M4 + 6M2s + 6s2) log

M2

s + M2
(A.30g)

D1(s) =
1

6s2

{

s(12M4 + 72M2s + 73s2) + 6(2M2 + s)(M4 + 6M2s + 6s2) log
M2

s + M2

}

(A.30h)
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B. Feynman rules for scalar and tensor resonances

We briefly summarize the Feynman rules for scalar and tensor resonances that derive from

the interaction Lagrangians (3.10a)–(3.10e). The ks in this section are the momenta of the

Goldstone bosons.

Scalar isoscalar:

σw+w− : −2ig

v
(k+ · k−) σzz : −2ig

v
(k1 · k2) (B.1)

Scalar isotensor:

φ±±w∓w∓ : −
√

2ig

v
(k1 · k2) φ±w∓z : − ig

v
(k∓ · kz) (B.2)

φ0zz : − 2ig√
3v

(k1 · k2) φ0w+w− : +
ig√
3v

(k+ · k−) (B.3)

For the Feynman rules of the tensor resonances we use the symbol Cµν,ρσ := gµρgνσ +

gµσgνρ − 1
2gµνgρσ to get (momenta incoming)

Tensor isoscalar:

fµνw+w− : − igf

v
Cµν,ρσkρ

+kσ
− fµνzz : − igf

v
Cµν,ρσkρ

1kσ
2 (B.4)

Tensor isotensor:

a±±
µν w∓w∓ : − iga√

2v
Cµν,ρσkρ

1k
σ
2 a±µνw

∓z : − iga

2v
Cµν,ρσkρ

∓kσ
z (B.5)

a0
µνzz : − iga√

3v
Cµν,ρσkρ

1k
σ
2 a0

µνw+w− : +
iga

2
√

3v
Cµν,ρσkρ

+kσ
− (B.6)

Note that taking the conditions on the tracelessness as well as the transversality not

necessarily demands the coupling of the tensor resonance to a conserved current (like the

energy-momentum tensor) which leads to the same Feynman rules as in [57]. The constraint

of the LET on the other hand results in an (off-shell continued) amplitude that is identical

to the one of a massive graviton resonance.

C. Vector resonance exchange

Heavy vector resonances have been studied many times in the literature, and various dif-

ferent formalisms describe their interactions with the SM particles. In this section, we

demonstrate the equivalence of some popular approaches. In particular, we look at the

correction to the amplitude A(s, t, u) for Goldstone-Goldstone scattering which via the

GBET and spin/isospin symmetry yields the leading term for all channels of quasi-elastic

WW scattering, w+w− → zz. Since we maintain manifest SU(2)L × U(1)Y gauge invari-

ance by using covariant derivatives, the GBET holds in any formalism that we describe.

If desired, this can be verified by switching to unitarity gauge and computing the W/Z

scattering amplitudes directly.

We ignore couplings to fermion currents, which generically will be present and sizable.

While such couplings get shifted by some of the transformations described below, in our
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model-independent approach they are considered as independent parameters which are

determined by independent measurements. The shifts of fermion couplings induced by

reparameterizations merely change a set of undetermined parameters into another set of

undetermined parameters, so for our purposes there is no need to calculate them. However,

in the context of a specific model, one should always treat fermionic and bosonic sectors

together when applying reparameterizations [58]. A specific example for this in the context

of Little Higgs models can be found in [59].

1. We use the representation with the Goldstone field Σ = exp(−iw/v) and introduce

the ρ resonance as a vector field in the iso-triplet representation. The Goldstone

kinetic term is

Lkin =
v2

4
tr
[

(DµΣ)†(DµΣ)
]

(C.1)

and can be expanded up to second order as

L(0)
kin = ∂w+∂w− +

1

2
∂z ∂z, (C.2)

L(2)
kin = − 1

2v2

(

w+∂w− + w−∂w+ + z ∂z
)2

. (C.3)

The interaction Lagrangian is

Lint =
igρv

2

2
tr [ρµVµ] (C.4)

Ignoring gauge fields, we carry out the expansion up to third order:

L(1)
int = −gρv

(

ρ+∂w− + ρ−∂w+ + ρ0∂z
)

, (C.5)

L(2)
int = igρ

[

ρ+
(

w−∂z − z ∂w−
)

− ρ−
(

w+∂z − z ∂w+
)

+ ρ0
(

w+∂w− − w−∂w+
)]

,

(C.6)

L(3)
int = −2gρ

3v

[

ρ+
((

w+w− + z2
)

∂w− − w−2∂w+ − w−z ∂z
)

+ ρ−
((

w+w− + z2
)

∂w+ − w+2∂w− − w+z ∂z
)

+ ρ0
(

−w−z ∂w+ − w+z∂w− + 2w+w−∂z
)]

, (C.7)

leading to the corresponding Feynman rules

ρ±µ w∓ : igvk∓,µ ρ0
µw+w− : igvkz,µ (C.8)

ρ±µ w∓z : ± ig(kz − k∓)µ ρ0
µw+w− : ig(k− − k+)µ (C.9)

ρ±µ w∓zz : − i
g

3v
(2k∓ − k1 − k2)µ ρ0

µw+w−z : − i
g

3v
(2kz − k+ − k−)µ

(C.10)

The resulting Feynman graphs for w+w− → zz are shown in figure 15. There is a

Goldstone contact interaction from the Goldstone kinetic term; this yields the low-

energy theorem (LET) A(s, t, u) = s/v2. Resonance exchange adds t- and u-channel

contributions,

A′
ρ(s, t, u) = −g2

ρ

(

s − u

t − M2
+

s − t

u − M2

)

, (C.11)
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Figure 15: Feynman graphs for w+w− → zz: contact term from the non-linear Lagrangian

leading to the LET on the left, resonance t- and u-channel exchange in the middle, and contact

terms from ρ/w/z mixing on the right.

which in the limit s → 0 become A′
ρ → −3g2

ρs/M
2. Furthermore, there are contri-

butions where the resonance mixes with the external Goldstone scalar, either as an

external wave-function correction, or with the ρ coupling to three scalars. In both

graph types the resonance pole cancels, so they are additional contact terms propor-

tional to s/M2. In unitarity gauge, this translates into a correction to W/Z masses

and interactions.

The appearance of a contact term looks like a violation of the LET. However, the

measured value of v (e.g., as extracted from W/Z pole data) includes those additional

contributions, so they merely renormalize a fictitious bare v value. This renormaliza-

tion can be made explicit by adding a counterterm to the ρ interaction Lagrangian,

which by power counting and symmetries must be of the form a gv2

M2Lkin with an ap-

propriate prefactor a. In effect, expressed in terms of the observed scale v, the LET

holds, and the vector-exchange amplitude is given by

Aρ(s, t, u) = −g2
ρ

(

s − u

t − M2
+

s − t

u − M2
+ 3

s

M2

)

, (C.12)

which vanishes as s2 as s → 0.

2. In the previous paragraph, the vector resonance was coupled to W/Z bosons by a

mass mixing term, tr [Vρ]. Alternatively, we could couple it by a kinetic mixing

term,

Lint = −gρ tr [Wµνρµν ] (C.13)

where the resonance “field strength” is ρµν = Dµρν − Dνρµ with the covariant

derivative in the adjoint representation. Partial integration gives

Lint = 2gρ tr [(DµWµν)ρν ] . (C.14)

Here, we can apply the W field equation

DµWµν = i
v2

4
Vν (C.15)
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to obtain

Lint =
igρv

2

2
tr [Vµρµ] (C.16)

as before, so we get the same scattering amplitude. Using the equations of motion is

precisely an application of the UET.

3. In the CCWZ formalism [35], the elementary building block is ξ with ξξ = Σ. From

ξ, we can construct a vector and an axial vector field,

Vµ =
i

2

(

ξ†Dµξ + ξDµξ†
)

and Aµ =
i

2

(

ξ†Dµξ − ξDµξ†
)

. (C.17)

Under SU(2)C , these transform like a gauge field and a matter field, respectively,

V → UCVU †
C − (DµUC)U †

C and A → UCAU †
C . (C.18)

A is related to the vector current that we have used in our previous formulation:

ξ†Vµξ = 2iAµ. We just have to redefine ρµ → ξ†ρµξ to obtain

Lkin = −2v2 tr [AµAµ] and Lint = −gρv
2 tr
[

ρµAµ
]

, (C.19)

so a matter field ρ coupled to the axial vector A yields the same scattering amplitude

again.

4. Alternatively, we can couple ρ to the vector field V by assigning to it a gauge-field

transformation law under SU(2)C ,

ρ → UCρU †
C − i

2gρv

M
(DµUC)U †

C , (C.20)

so the leading invariant term containing ρ is

Lint = −g2
ρv

2 tr

[

(

V + i
M

2gρv
ρ

)2
]

= −g2
ρv

2 tr [VV] − igρvM tr [Vρ] +
M2

4
tr [ρρ]

(C.21)

The expansion of V is even in the number of Goldstone fields. Therefore, in this

expression, the last term is the ρ mass, the second term yields the ρ0w+w− and

ρ±w∓z couplings, and the first term is a contact term. Note that the gauge coupling

is proportional to 1/gρ. The resulting w+w− → zz amplitude is again (C.12), this

time without the need for renormalizing v.

5. The BESS model [6] has a similar setup. Instead of gauging just SU(2)C , we can

extend the local symmetry by an extra local, nonlinearly realized SU(2)L × SU(2)R.

This results in two vector isotriplets, which can be combined to a vector and an axial

vector isotriplet, respectively. Only the vector couples to longitudinal W/Z pairs,

and the amplitude (C.12) can be derived as before.
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Figure 16: Cross sections (in nanobarns) for the five different scattering processes of longitudinal

weak gauge bosons: SM with a 120GeV and a 1 TeV Higgs in the upper line, in the middle: SM

without a Higgs without and with K-matrix unitarization, respectively. In the lower line, the case

of α4,5 switched on are shown, on the left without, on the right with K matrix unitarization. The

contribution from the forward region is cut out by a 15 degree cut around the beam axis.

The different formalisms for coupling vector resonances all result in the same scattering

amplitude. This is not surprising since this amplitude is completely determined by spin and

isospin conservation together with the LET. In order to give the CCWZ interpretation of the

vector resonance as a gauge field (in contrast to a generic matter field) a physical meaning,

we would have to measure triple ρ couplings, analogous to the LEP2 measurements of triple

gauge couplings. Unfortunately, such measurements are beyond the reach of LHC.
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Figure 17: Cross sections for V V → V V scattering in nanobarns, with the presence of resonances:

scalars (isoscalar σ and isotensor φ) in the upper line, vector isovector ρ in the middle, and tensors

(isoscalar f and isotensor a) in the lower line, respectively. All amplitudes have been unitarized

according to the K-matrix method. The resonance mass is set to 500GeV in each case. Again, the

contribution from the forward region is cut out by a 15 degree cut around the beam axis.

D. Specific models

In the literature, a variety of “benchmark” models has been formulated that test weak-

boson scattering. In this section, we relate some of them to our parameterization:

1. The SM. As discussed in the main text, for gσ = 1 the scalar resonance model

precisely reproduces SM Higgs exchange. Alternatively, one can switch to the default
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SM implementation (in WHIZARD) without extra resonances.

2. Scalar resonances. Refs. [8, 9] introduce a collection of models, among them two

with a scalar resonance (“O(2N)” and “chirally coupled scalar”). The latter model

is identical to our scalar resonance parameterization. The O(2N) model is essentially

a special case of this with fixed mass and width; the only distinction is a logarithmic

cutoff-dependent modification, which manifests itself beyond the resonance. This

detail is unlikely to be detectable at the LHC.

3. Vector resonances. The chirally-coupled vector resonance model of [8, 9] is iden-

tical to ours (see the discussion of the CCWZ formalism in appendix C), where we

identify a = (2gρv/Mρ)
2 and g = M2

ρ /(2v2gρ). An analogous identification holds for

the BESS model [60], with a replaced by β in their notation.

4. Padé/IAM unitarization model.

As discussed in section 4.5, this scheme is a special case of the K-matrix scheme

as defined in the present paper. For a given combination (α4, α5) we use

eqs. (4.14a), (4.14c), (4.14e) to determine the NLO correction A
(1)
IJ to the three am-

plitudes A00, A11, and A20 which without correction would violate unitarity. Then,

we can use (4.31) to identify scalar, vector, and tensor resonance masses and widths.

If we neglect the loop corrections in (4.14a)–(4.14e), we obtain

M2
σ =

3v2

4(7α4(µ) + 11α5(µ)
Γσ =

Mσ

16π

M2
σ

v2
(D.1a)

M2
ρ =

v2

4(α4(µ) − 2α5(µ))
Γρ =

Mρ

96π

M2
ρ

v2
(D.1b)

M2
f = − 3v2

16(2α4(µ) + α5(µ))
Γf = −Mf

32π

M2
f

v2
(D.1c)

where we have to define a renormalization scheme and fix the scale µ. Note that the

tensor-resonance parameters are unphysical. This is due to the negative sign of A
(0)
20

in eq. (4.13). This model ignores the possibility of isotensor resonances φ or a.

E. On-shell vector boson scattering

In this section we summarize the plots for “partonic” scattering of spin-averaged and

summed vector bosons. In all these pictures, the EW gauge bosons are treated on-shell,

hence the cross sections start when the physical WW or ZZ threshold is reached. Since

we did not switch off the electromagnetic coupling in those plots, we applied a cut of 15

degrees around the beam axis to cut out the Coulomb scattering part. Figure 16 shows in

the upper line the SM with a 120 GeV Higgs on the left and a heavy 1 TeV on the right.

Unitarity is preserved in those cases because of the (s-channel) Higgs exchange. Besides

the dominant resonance for a heavy Higgs, the amplitudes show a saturation for the high-

energy tails which starts again violating partial-wave unitarity for 1.2, 3.5, and 1.7 TeV

for the I = 0, 1, 2 isospin channels, respectively. Completely removing the Higgs as in the
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middle line of 16 leads to a rise of the amplitudes (and hence the cross sections) with s (the

zz → zz process is absent in that case). Switching on the K-matrix unitarization damps

the amplitudes back to the Argand circle, thereby restoring unitarity. This happens for the

above mentioned values for the corresponding isospin eigenamplitudes. In the lower line of

figure 16, the case of the LET extended by nonzero values for the parameters α4 and α5

are shown, on the left the badly diverging case without unitarization, and the K-matrix

unitarized case on the right.

In figure 17 we show the cross sections for the five different vector boson scatter-

ing processes with the presence of the five isospin-allowed resonances mentioned in the

text. ZZ → ZZ and WW → ZZ contain all three isospin eigenamplitudes, hence show

a resonance in all channels except for the vector resonance case where it is forbidden by

the Yang-Landau theorem. The amplitude WZ → WZ does not have isoscalar reso-

nances, while the amplitude W+W+ → W+W+ allows only isotensor resonances. Finally,

W+W− → W+W− contains all resonances.
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H.J. Borchers, Über die Mannigfaltigkeit der interpolierenden Felder zu einer kausalen

S-Matrix, Nuovo Cim. 15 (1960) 784;

D. Ruelle, On the asymptotic condition in quantum field theory, Helv. Phys. Acta 35 (1962)

147;

J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from

high-energy unitarity bounds on the S matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. 11

(1975) 972];

M.C. Bergère and Y.-M.P. Lam, Equivalence theorem and Faddeev-Popov ghosts, Phys. Rev.

D 13 (1976) 3247;

P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle,

Commun. Math. Phys. 52 (1977) 11.

[42] F. Larios and C.P. Yuan, Top quark interactions and the search for new physics, Phys. Rev.

D 55 (1997) 7218 [hep-ph/9606397].

[43] O. Cheyette and M.K. Gaillard, The effective one loop action in the strongly interacting

standard electroweak theory, Phys. Lett. B 197 (1987) 205.

[44] S. Dawson and S. Willenbrock, Radiative corrections to longitudinal vector boson scattering,

Phys. Rev. D 40 (1989) 2880.

[45] S. Weinberg, Pion scattering lengths, Phys. Rev. Lett. 17 (1966) 616;

M.S. Chanowitz, M. Golden and H. Georgi, Low-energy theorems for strongly interacting W ’s

and Z’s, Phys. Rev. D 36 (1987) 1490.

[46] S.N. Gupta, Quantum electrodynamics, Gordon and Breach, U.S.A. (1981);

M.S. Chanowitz, Quantum corrections from nonresonant W W scattering, Phys. Rept. 320

(1999) 139 [hep-ph/9903522].

[47] A. Dobado and J.R. Pelaez, The inverse amplitude method in Chiral Perturbation Theory,

Phys. Rev. D 56 (1997) 3057 [hep-ph/9604416].

[48] W. Kilian and K. Riesselmann, The Higgs resonance in vector boson scattering, Phys. Rev. D

58 (1998) 053004 [hep-ph/9801265].

[49] C. Delaunay, C. Grojean and J.D. Wells, Dynamics of non-renormalizable electroweak

symmetry breaking, JHEP 04 (2008) 029 [arXiv:0711.2511];

G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs,

JHEP 06 (2007) 045 [hep-ph/0703164].

[50] W. Menges, A study of charged current triple gauge couplings at TESLA,

LC-PHSM-2001-022.

[51] W. Kilian and J. Reuter, Resonances and electroweak observables at the ILC,

hep-ph/0507099;

E. Accomando et al., Workshop on CP studies and non-standard Higgs physics,

hep-ph/0608079.

[52] T. Ohl and J. Reuter, Clockwork SUSY: supersymmetric Ward and Slavnov-Taylor identities

at work in Green’s functions and scattering amplitudes, Eur. Phys. J. C 30 (2003) 525

[hep-th/0212224];

T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon

collider, Phys. Rev. D 70 (2004) 076007 [hep-ph/0406098];

– 51 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C112%2C669
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C112%2C669
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD10%2C1145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD13%2C3247
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD13%2C3247
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C52%2C11
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C7218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C7218
http://arxiv.org/abs/hep-ph/9606397
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB197%2C205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD40%2C2880
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C17%2C616
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C1490
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C320%2C139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C320%2C139
http://arxiv.org/abs/hep-ph/9903522
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C3057
http://arxiv.org/abs/hep-ph/9604416
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C053004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C053004
http://arxiv.org/abs/hep-ph/9801265
http://jhep.sissa.it/stdsearch?paper=04%282008%29029
http://arxiv.org/abs/0711.2511
http://jhep.sissa.it/stdsearch?paper=06%282007%29045
http://arxiv.org/abs/hep-ph/0703164
http://www-spires.slac.stanford.edu/spires/find/hep/www?r= LC-PHSM-2001-022
http://arxiv.org/abs/hep-ph/0507099
http://arxiv.org/abs/hep-ph/0608079
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC30%2C525
http://arxiv.org/abs/hep-th/0212224
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C076007
http://arxiv.org/abs/hep-ph/0406098


J
H
E
P
1
1
(
2
0
0
8
)
0
1
0

K. Hagiwara et al., Supersymmetry simulations with off-shell effects for LHC and ILC, Phys.

Rev. D 73 (2006) 055005 [hep-ph/0512260];

J. Reuter et al., Next generation multi-particle event generators for the MSSM, eConf

C0508141 (2005) ALCPG0323 [hep-ph/0512012];

W. Kilian, D. Rainwater and J. Reuter, Pseudo-axions in little Higgs models, Phys. Rev. D

71 (2005) 015008 [hep-ph/0411213]; Distinguishing little-Higgs product and simple group

models at the LHC and ILC, Phys. Rev. D 74 (2006) 095003 [erratum ibid. 74 (2006)

099905] [hep-ph/0609119];

W. Kilian, J. Reuter and T. Robens, NLO event generation for chargino production at the

ILC, Eur. Phys. J. C 48 (2006) 389 [hep-ph/0607127];

T. Robens, J. Kalinowski, K. Rolbiecki, W. Kilian and J. Reuter, (N)LO simulation of

chargino production and decay, arXiv:0803.4161.

[53] P.W. Johnson, F.I. Olness and W.-K. Tung, The effective vector boson method for

high-energy collisions, Phys. Rev. D 36 (1987) 291.

[54] E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Isolating vector boson scattering

at the LHC: gauge cancellations and the equivalent vector boson approximation vs complete

calculations, Phys. Rev. D 74 (2006) 073010 [hep-ph/0608019].

[55] J. Schumacher et al., in preparation.
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